Duality for discrete integrable systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2005 J. Phys. A: Math. Gen. 383965
(http://iopscience.iop.org/0305-4470/38/18/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.66
The article was downloaded on 02/06/2010 at 20:11

Please note that terms and conditions apply.

Duality for discrete integrable systems

G R W Quispel ${ }^{1,2}$, H W Capel ${ }^{3}$ and J A G Roberts ${ }^{2,4}$
${ }^{1}$ Department of Mathematics, La Trobe University, Melbourne, Victoria 3086, Australia
${ }^{2}$ Centre of Excellence for Mathematics and Statistics of Complex Systems, La Trobe University, Melbourne, Victoria 3086, Australia
${ }^{3}$ Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, Netherlands
${ }^{4}$ School of Mathematics, The University of New South Wales, Sydney NSW 2052, Australia
E-mail: R.Quispel@latrobe.edu.au and Jag.Roberts@unsw.edu.au

Received 20 December 2004, in final form 21 March 2005
Published 18 April 2005
Online at stacks.iop.org/JPhysA/38/3965

Abstract

A new class of discrete dynamical systems is introduced via a duality relation for discrete dynamical systems with a number of explicitly known integrals. The dual equation can be defined via the difference of an arbitrary linear combination of integrals and its upshifted version. We give an example of an integrable mapping with two parameters and four integrals leading to a (four-dimensional) dual mapping with four parameters and two integrals. We also consider a more general class of higher-dimensional mappings arising via a travelling-wave reduction from the (integrable) MKdV partial-difference equation. By differencing the trace of the monodromy matrix we obtain a class of novel dual mappings which is shown to be integrable as level-set-dependent versions of the original ones.

PACS numbers: $02.30 . \mathrm{Ik}, 05.45 .-\mathrm{a}$

1. Introduction

Discrete integrable systems have received a lot of attention in the last two decades. Areas of physics in which discrete integrable systems prominently feature include statistical mechanics and discrete analogues of integrable systems in classical mechanics or solid state physics [5-8, 22-25].

Some of the early papers dealt with the problem of discretizing integrable partial differential equations, such as the (modified) Korteweg-de Vries (MKdV) equation and the sine-Gordon equation, while retaining their integrability. This led to integrable partial difference equations ($\mathrm{P} \Delta \mathrm{Es}$) [12-15]. Later papers studied integrable ordinary difference equations ($\mathrm{O} \Delta \mathrm{Es}$), both autonomous (i.e. integrable maps) [5-8, 10, 21] and non-autonomous (e.g. discrete Painlevé equations, for a review see [11]).

In this paper we start from a (primary) $\mathrm{O} \Delta \mathrm{E}$ with one or more first integrals, and construct a dual $\mathrm{O} \Delta \mathrm{E}$ which also has one or more integrals. While neither the primary $\mathrm{O} \Delta \mathrm{E}$ nor the dual need be integrable in order for this construction to work, here we will be mainly interested in the case where the primary $\mathrm{O} \Delta \mathrm{E}$ is integrable. The question we subsequently seek to answer is whether or not the ensuing dual equation is also integrable.

Accordingly, we focus on a new class of discrete dynamical systems which can be obtained by means of a duality relation from a known discrete dynamical system which possesses a number of integrals. The general idea is as follows. We consider a discrete dynamical system given by the d th-order $\mathrm{O} \Delta \mathrm{E}$:

$$
\begin{equation*}
u_{n+d}=f\left(u_{n}, u_{n+1}, \ldots, u_{n+d-1},\left\{p_{i}\right\}\right), \tag{1}
\end{equation*}
$$

where $\left\{p_{i}\right\}$ is a set of l parameters occurring in the system and $f: \mathbb{R}^{d+l} \rightarrow \mathbb{R}$. By the standard method, we can alternatively view (1) as defining a map

$$
\begin{equation*}
\mathbf{V}_{n+1}=\mathbf{F}\left[\mathbf{V}_{n},\left\{p_{i}\right\}\right], \tag{2}
\end{equation*}
$$

in which

$$
\begin{equation*}
\mathbf{V}_{n}:=\left(u_{n}, u_{n+1}, \ldots, u_{n+d-1}\right) \tag{3}
\end{equation*}
$$

is a d-dimensional vector and $\mathbf{F}: \mathbb{R}^{d+l} \rightarrow \mathbb{R}^{d}$.
Suppose the dynamical system is known to have the integrals

$$
\begin{equation*}
I_{j}:=I_{j}\left(\mathbf{V}_{n},\left\{p_{i}\right\}\right)=I_{j}\left(\mathbf{V}_{n+1},\left\{p_{i}\right\}\right) \tag{4}
\end{equation*}
$$

with $j=1, \ldots, m$. Then we can form a linear combination

$$
\begin{equation*}
\sum_{i=1}^{m} \alpha_{j} I_{j}=: I\left(\mathbf{V}_{n},\left\{p_{i}\right\},\left\{\alpha_{j}\right\}\right), \tag{5}
\end{equation*}
$$

which, for arbitrary α_{j}, is an integral of system (1).
Taking the difference between the integral \mathbf{I} and its upshifted version, we derive a relation of the type

$$
\begin{equation*}
I\left(\mathbf{V}_{n+1},\left\{p_{i}\right\},\left\{\alpha_{j}\right\}\right)-I\left(\mathbf{V}_{n},\left\{p_{i}\right\},\left\{\alpha_{j}\right\}\right)=L\left(\mathbf{V}_{n}, \mathbf{V}_{n+1},\left\{p_{i}\right\}\right) L^{*}\left(\mathbf{V}_{n}, \mathbf{V}_{n+1},\left\{p_{i}\right\},\left\{\alpha_{j}\right\}\right) \tag{6}
\end{equation*}
$$

in which

$$
\begin{equation*}
L\left(\mathbf{V}_{n}, \mathbf{V}_{n+1},\left\{p_{i}\right\}\right)=u_{n+d}-f\left(u_{n}, u_{n+1}, \ldots, u_{n+d-1},\left\{p_{i}\right\}\right)=0 \tag{7}
\end{equation*}
$$

is equivalent to the original dynamical equation (1).
In fact, for system (1), the left-hand side of (6) must vanish and one would expect the right-hand side to contain a factor such that the vanishing of that factor is equivalent to the dynamical equation (1). Apart from this, the right-hand side may contain another factor such that the vanishing of this second factor also ensures that the left-hand side of (6) is zero.

Starting from a specific example of a dynamical mapping (1) possessing integrals, it is not clear to which extent the second factor would contain an interesting dependence on the field \mathbf{V}_{n}. However, if this dependence is interesting, the vanishing of the second factor could be equivalent to another dynamical equation which by construction of (6) may be called the dual equation of the original (1). The dual equation automatically has one integral which is given by $I\left(\mathbf{V}_{n},\left\{p_{i}\right\},\left\{\alpha_{j}\right\}\right)$ but, depending on the presence or absence of the original parameters $\left\{p_{i}\right\}$ in L^{*}, there may be more integrals.

At this stage the description of how to obtain the dual equation and the nature of the resulting dual equation is rather general ${ }^{5}$. However, in this paper, we will show on the basis of

[^0]some more sophisticated specific examples that indeed new dynamical systems with interesting properties can be derived from the differencing of integrals described by (6).

In section 2, we will first consider what we call a motivating example. Our starting point is a low-dimensional mapping arising from the integrable partial difference MKdV equation of [6] by a travelling-wave reduction. It has four integrals and the dual mapping has four parameters and two integrals but may not be integrable.

The following sections 3-6 are devoted to a more general class of higher-dimensional mappings arising from the MKdV partial-difference equations treated in [6]. We consider the integrals arising from different powers of the spectral parameter occurring in the trace of the monodromy matrix T. Defining the dual equation by (6) with $I=\operatorname{Trace} T$, we find that these provide some new dynamical systems which can be considered as generalizations of known integrable mappings and which have a number of interesting integrals. In fact, we can establish the integrability of the ensuing dual equations. We do this by deriving a Lax representation for it which can be obtained from the Lax representation of the original system by some simple substitutions. Furthermore, it is interesting to note that in this case the dual equation is a so-called level-set-dependent (LSD) version of the original equation. This terminology refers to a higher-dimensional generalization of the work of [3, 4] on QRT $[7,8]$ and other mappings, where it was shown that a large class of such mappings amounts to a LSD version of the McMillan mapping. The work of [3, 4] and of [9] represents another way of associating two dynamical systems with integrals to one another.

The treatment given in this paper can also be applied to a large variety of other dynamical systems and various possible extensions and specific comments are given in a final discussion.

2. A motivating example: creating the dual of a 4D map

Consider the following fourth-order difference equation:

$$
\begin{equation*}
V_{4}=V_{0} \frac{q V_{1}-p V_{3}}{q V_{3}-p V_{1}} \tag{8}
\end{equation*}
$$

In (8) and throughout this section, $V_{j}, j=0,1,2,3,4$ is shorthand for $V_{n+j}, n \in \mathbb{Z}$, and p and q are parameters. This equation can be obtained as a reduction of the so-called MKdV $\mathrm{P} \triangle \mathrm{E}$ [6]. It is equivalent to the following map $\left(V_{0}, V_{1}, V_{2}, V_{3}\right) \mapsto\left(V_{0}^{\prime}, V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}\right)$ in four dimensions:

$$
\begin{align*}
& L: V_{0}^{\prime} \\
&=V_{1} \\
& V_{1}^{\prime}=V_{2} \tag{9}\\
& V_{2}^{\prime} \\
&=V_{3} \\
& V_{3}^{\prime}
\end{align*}=V_{0} \frac{q V_{1}-p V_{3}}{q V_{3}-p V_{1}} .
$$

One checks that the map L has the following four integrals of motion (i.e. $I_{\alpha}\left(V_{1}, V_{2}, V_{3}, V_{4}\right)=$ $I_{\alpha}\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ etc). They each depend linearly on the parameters p and q, which we highlight by writing them:

$$
\begin{align*}
I_{\alpha} & =I_{\alpha, q} q-I_{\alpha, p} p \tag{10}\\
I_{\beta} & =I_{\beta, q} q-I_{\beta, p} p \tag{11}\\
I_{\gamma} & =I_{\gamma, q} q-I_{\gamma, p} p \tag{12}\\
I_{\delta} & =I_{\delta, q} q-I_{\delta, p} p \tag{13}
\end{align*}
$$

with

$$
\begin{align*}
& I_{\alpha, p}=\frac{V_{1}}{V_{0}}+\frac{V_{2}}{V_{1}}+\frac{V_{3}}{V_{2}}+\frac{V_{0}}{V_{1}}+\frac{V_{1}}{V_{2}}+\frac{V_{2}}{V_{3}} \tag{14}\\
& I_{\beta, p}=\frac{V_{2}}{V_{0}}+\frac{V_{3}}{V_{1}}+\frac{V_{0}}{V_{2}}+\frac{V_{1}}{V_{3}}+\frac{V_{3} V_{0}}{V_{2} V_{1}}+\frac{V_{2} V_{1}}{V_{3} V_{0}} \tag{15}\\
& I_{\gamma, p}=V_{3} V_{0} \tag{16}\\
& I_{\delta, p}=V_{3}^{-1} V_{0}^{-1} \tag{17}\\
& I_{\alpha, q}=\frac{V_{3}}{V_{0}}+\frac{V_{0}}{V_{3}} \tag{18}\\
& I_{\beta, q}=\frac{V_{2}}{V_{0}}+\frac{V_{3}}{V_{1}}+\frac{V_{0}}{V_{2}}+\frac{V_{1}}{V_{3}}+\frac{V_{2} V_{3}}{V_{0} V_{1}}+\frac{V_{0} V_{1}}{V_{2} V_{3}} \tag{19}\\
& I_{\gamma, q}=V_{0} V_{1}+V_{1} V_{2}+V_{2} V_{3} \tag{20}\\
& I_{\delta, q}=V_{0}^{-1} V_{1}^{-1}+V_{1}^{-1} V_{2}^{-1}+V_{2}^{-1} V_{3}^{-1} . \tag{21}
\end{align*}
$$

These integrals may be inferred from the work of Hydon [2], but they can also be checked directly using two obvious symmetries of (8): $S_{1}: V_{i} \mapsto \lambda V_{i}, \lambda \in \mathbb{R}$ and $S_{2}: V_{i} \mapsto V_{i}^{-1}$. This is equivalent to saying that L of (9) commutes with S_{1} and S_{2}, whence if L has an integral I it also has an integral $I \circ S_{i}, i=1,2$. Using this, the integrals follow by constructing homogeneous expressions in the V_{i} of degree 0 (i.e. I_{α}, I_{β}), 2 (i.e. I_{γ}) and -2 (i.e. I_{δ}). We now take the linear combination of these integrals ${ }^{6}$:

$$
\begin{equation*}
I\left(V_{0}, V_{1}, V_{2}, V_{3} ; p, q ; \alpha, \beta, \gamma, \delta\right)=\alpha I_{\alpha}+\beta I_{\beta}+\gamma I_{\gamma}+\delta I_{\delta}, \tag{22}
\end{equation*}
$$

and difference it, meaning we consider the difference between I and its upshifted version I^{\prime} with $V_{j} \mapsto V_{j+1}$. Since the separate integrals satisfy
$I_{\alpha}-I_{\alpha}^{\prime}=\left[\left(q \frac{V_{3}}{V_{1}}-p\right)-\frac{V_{0}}{V_{4}}\left(q-p \frac{V_{3}}{V_{1}}\right)\right]\left(\frac{V_{1}}{V_{0}}-\frac{V_{4}}{V_{3}}\right)$,
$I_{\beta}-I_{\beta}^{\prime}=\left[\left(q \frac{V_{3}}{V_{1}}-p\right)-\frac{V_{0}}{V_{4}}\left(q-p \frac{V_{3}}{V_{1}}\right)\right]\left(\frac{V_{2}}{V_{0}}\left(1+\frac{V_{1}}{V_{3}}\right)-\frac{V_{4}}{V_{2}}\right)\left(1+\frac{V_{1}}{V_{3}}\right)$,
$I_{\gamma}-I_{\gamma}^{\prime}=\left[\left(q \frac{V_{3}}{V_{1}}-p\right)-\frac{V_{0}}{V_{4}}\left(q-p \frac{V_{3}}{V_{1}}\right)\right]\left(-V_{1} V_{4}\right)$,
$I_{\delta}-I_{\delta}^{\prime}=\left[\left(q \frac{V_{3}}{V_{1}}-p\right)-\frac{V_{0}}{V_{4}}\left(q-p \frac{V_{3}}{V_{1}}\right)\right]\left(V_{0}^{-1} V_{3}^{-1}\right)$,
and so vanish if (8) is satisfied, we find

$$
\begin{align*}
& I\left(V_{1}, V_{2}, V_{3}, V_{4} ; p, q ; \alpha, \beta, \gamma, \delta\right)-I\left(V_{0}, V_{1}, V_{2}, V_{3} ; p, q ; \alpha, \beta, \gamma, \delta\right) \\
& \quad=L\left(V_{0}, V_{1}, V_{2}, V_{3}, V_{4} ; p, q\right) L^{*}\left(V_{0}, V_{1}, V_{2}, V_{3}, V_{4} ; \alpha, \beta, \gamma, \delta\right) \tag{27}
\end{align*}
$$

where

$$
\begin{equation*}
L\left(V_{0}, V_{1}, V_{2}, V_{3}, V_{4} ; p, q\right)=\left[\left(q \frac{V_{3}}{V_{1}}-p\right)-\frac{V_{0}}{V_{4}}\left(q-p \frac{V_{3}}{V_{1}}\right)\right] \tag{28}
\end{equation*}
$$

[^1]\[

$$
\begin{gather*}
L^{*}\left(V_{0}, V_{1}, V_{2}, V_{3}, V_{4} ; \alpha, \beta, \gamma, \delta\right)=\left[\frac{1}{V_{0}}\left(\alpha V_{1} V_{3}+\beta V_{2} V_{3}+\beta V_{1} V_{2}+\delta\right)\right. \\
\left.-\frac{V_{4}}{V_{2}}\left(\alpha V_{2}+\beta\left(V_{3}+V_{1}\right)+\gamma V_{1} V_{2} V_{3}\right)\right] \frac{1}{V_{3}} \tag{29}
\end{gather*}
$$
\]

The equation

$$
\begin{equation*}
L\left(V_{0}, V_{1}, V_{2}, V_{3}, V_{4} ; p, q\right)=0 \tag{30}
\end{equation*}
$$

solved for V_{4} gives precisely (8). With (27), this reminds us that I of (22) is an integral of this map. On the other hand, the equation

$$
\begin{equation*}
L^{*}\left(V_{0}, V_{1}, V_{2}, V_{3}, V_{4} ; \alpha, \beta, \gamma, \delta\right)=0 \tag{31}
\end{equation*}
$$

defines a different fourth-order difference equation:

$$
\begin{equation*}
V_{4}=\frac{V_{2}}{V_{0}} \frac{\alpha V_{1} V_{3}+\beta\left(V_{1} V_{2}+V_{2} V_{3}\right)+\delta}{\alpha V_{2}+\beta\left(V_{1}+V_{3}\right)+\gamma V_{1} V_{2} V_{3}} . \tag{32}
\end{equation*}
$$

We call (32) the dual map corresponding to (8). It follows from (27) that I is also an integral of the dual. But significantly in equation (27), the parameter sets $\{p, q\}$ and $\{\alpha, \beta, \gamma, \delta\}$ dissociate from one another on the right-hand side. Since p and q do not appear in the dual map (32), we can conclude that their coefficients in I are separately integrals of (32). More precisely, we can use (10)-(13) to rewrite the expression for I of (22) as

$$
\begin{equation*}
I\left(V_{0}, V_{1}, V_{2}, V_{3} ; p, q ; \alpha, \beta, \gamma, \delta\right)=q I_{q}-p I_{p} \tag{33}
\end{equation*}
$$

where I_{q} and I_{p} given by

$$
\begin{align*}
I_{q}= & \left(\alpha I_{\alpha, q}+\beta I_{\beta, q}+\gamma I_{\gamma, q}+\delta I_{\delta, q}\right) \\
= & \alpha\left(\frac{V_{3}}{V_{0}}+\frac{V_{0}}{V_{3}}\right)+\beta\left(\frac{V_{2}}{V_{0}}+\frac{V_{3}}{V_{1}}+\frac{V_{0}}{V_{2}}+\frac{V_{1}}{V_{3}}+\frac{V_{2} V_{3}}{V_{0} V_{1}}+\frac{V_{0} V_{1}}{V_{2} V_{3}}\right) \\
& +\gamma\left(V_{0} V_{1}+V_{1} V_{2}+V_{2} V_{3}\right)+\delta\left(V_{0}^{-1} V_{1}^{-1}+V_{1}^{-1} V_{2}^{-1}+V_{2}^{-1} V_{3}^{-1}\right) \tag{34}\\
I_{p}= & \left(\alpha I_{\alpha, p}+\beta I_{\beta, p}+\gamma I_{\gamma, p}+\delta I_{\delta, p}\right) \\
= & \alpha\left(\frac{V_{1}}{V_{0}}+\frac{V_{2}}{V_{1}}+\frac{V_{3}}{V_{2}}+\frac{V_{0}}{V_{1}}+\frac{V_{1}}{V_{2}}+\frac{V_{2}}{V_{3}}\right) \\
& +\beta\left(\frac{V_{2}}{V_{0}}+\frac{V_{3}}{V_{1}}+\frac{V_{0}}{V_{2}}+\frac{V_{1}}{V_{3}}+\frac{V_{0} V_{3}}{V_{1} V_{2}}+\frac{V_{1} V_{2}}{V_{0} V_{3}}\right)+\gamma V_{0} V_{3}+\delta V_{0}^{-1} V_{3}^{-1} \tag{35}
\end{align*}
$$

are integrals of the dual.
Let us make some remarks about this process.

Remark.

(1) It has been convenient that the parameters p and q entered the integrals of (10)-(13) in a linear way. One sees that the number of integrals of the dual is equal to the number of parameters appearing in the original map and vice versa.
(2) The original map is actually degenerate, and can be reduced to a second-order difference equation. This is achieved by introducing the reduced variables: $W_{0}=\frac{V_{2}}{V_{0}}, W_{1}=\frac{V_{3}}{V_{1}}$. Then (8) reduces to

$$
\begin{equation*}
W_{2}=\frac{1}{W_{0}} \frac{q-p W_{1}}{q W_{1}-p} \tag{36}
\end{equation*}
$$

Of the four integrals $I_{\alpha}, I_{\beta}, I_{\gamma}, I_{\delta}$ of the original map, only I_{β} can be expressed in terms of the reduced variables. However, differencing just I_{β} in (22)-(27) would lead to a completely trivial dual equation determined by $L^{*}\left(V_{0}, V_{1}, V_{2}, V_{3}, V_{4} ; 0, \beta, 0,0\right)=0$.
(3) For general parameters α, β, γ and δ, the dual map (32) has two integrals. It can also be checked to be measure preserving. But this is not enough to ensure integrability. In fact, no symplectic structure and no additional integrals have been found so far for the general case. Numerically, some special cases of (32) have been shown to have zero algebraic entropy [20]. It may also be interesting to investigate the possible integrability of the dual by extending to four dimensions the arithmetic integrability tests of [16, 17].

We mention some special cases of the dual map that we have proved to be integrable.

- For $\beta=0$, (32) reduces to the four-dimensional sine-Gordon (SG) mapping [1]. It can be derived from the SG difference equation using a periodicity constraint $[6,1]$.
- For $\gamma=\delta=0$, (32) reduces to a three-dimensional mapping in terms of the variables $W_{0}=\frac{V_{1}}{V_{0}}, W_{1}=\frac{V_{2}}{V_{1}}, W_{2}=\frac{V_{3}}{V_{2}}$:

$$
\begin{equation*}
W_{3}=\frac{W_{1} W_{0}}{W_{2}} \frac{\alpha W_{2}+\beta\left(1+W_{1} W_{2}\right)}{\alpha W_{1}+\beta\left(1+W_{1} W_{2}\right)} . \tag{37}
\end{equation*}
$$

For this reduced mapping, there are two integrals I_{q} and I_{p} with $\gamma=\delta=0$, both of which can be expressed in terms of W_{0}, W_{1} and W_{2}. In combination with measure preservation this implies integrability.

- For $\alpha=0,(32)$ reduces to a three-dimensional mapping in terms of the variables $W_{0}=V_{1} V_{0}, W_{1}=V_{2} V_{1}, W_{2}=V_{3} V_{2}:$

$$
\begin{equation*}
W_{3}=\frac{W_{1} W_{2}}{W_{0}} \frac{\beta\left(W_{1}+W_{2}\right)+\delta}{\beta\left(W_{1}+W_{2}\right)+\gamma W_{1} W_{2}} . \tag{38}
\end{equation*}
$$

Again, for $\alpha=0$, both of the integrals I_{q} and I_{p} of (32) can be expressed in terms of W_{0}, W_{1} and W_{2}.
(4) Finally, it is worthwhile to note that we can achieve four normal forms for (32) with $\gamma=\delta=0 ; \gamma=\delta=1 ; \gamma=1, \delta=0 ; \operatorname{resp} \gamma=1, \delta=-1$. This can be done using the rescaling $V_{i} \mapsto \lambda V_{i}$ and the symmetry $V_{i} \mapsto V_{i}^{-1}, \gamma \leftrightarrow \delta$.
The exercise of constructing the dual of (8) is not without some mystery! From (36) it follows that (8) is in a sense a trivial four-dimensional mapping since it can be reduced to a two-dimensional one. And yet, ignoring this fact and taking its four non-independent integrals $I_{\alpha}, I_{\beta}, I_{\gamma}$ and I_{δ} produces, in special cases, duals (37) and (38) which appear to be genuinely new and nontrivial integrable three-dimensional mappings (see [18] for some other examples of three-dimensional integrable mappings).

3. Integrable $\mathbf{O} \Delta$ Es derived from soliton equations have a dual

In this section and in section 4 , we present a method for obtaining the dual equations of a general class of higher-dimensional mappings arising from the MKdV partial difference equation [6]. However, we first use a general formulation on the basis of a given Lax representation for general integrable partial difference equations. This is done to make the treatment directly applicable to other integrable dynamical systems as well. The remaining sections 5 and 6 will specialize to the MKdV case.

A (scalar) $\mathrm{P} \Delta \mathrm{E}$ on a two-dimensional lattice $f_{\ell, m}=0, \ell, m \in \mathbb{Z}$ has a Lax representation if there are matrices $L_{\ell, m}(k), M_{\ell, m}^{-1}(k), N_{\ell, m}(k)$ depending on a spectral parameter k such that

$$
\begin{equation*}
L_{\ell, m}(k) M_{\ell, m}^{-1}(k)-M_{\ell+1, m}^{-1}(k) L_{\ell, m+1}(k)=f_{\ell, m} N_{\ell, m}(k) \tag{39}
\end{equation*}
$$

in which $f_{\ell, m}$ does not depend on k, and $N_{\ell, m}$ is nonsingular on $f_{\ell, m}=0$.

We restrict ourselves to the $\mathrm{P} \Delta \mathrm{E}$

$$
f_{\ell, m}=0
$$

with $f_{\ell, m}$ of the form

$$
\begin{equation*}
f_{\ell, m}=f\left(u_{\ell, m}, u_{\ell+1, m}, u_{\ell, m+1}, u_{\ell+1, m+1}, \underline{p}_{\ell, m}\right) \tag{40}
\end{equation*}
$$

where the $p_{\ell, m}$ denote any additional parameters arising from the matrices L and M, and the fields $u_{\ell, m}$, for simplicity, are taken to be scalars. The subscripts ℓ, m allow for the possibility that the parameters p depend on the lattice sites (ℓ, m). This general setting is investigated in order to obtain dual equations and their integrals with a sufficient amount of generality.

A P $\Delta \mathrm{E}$ can be reduced to an ordinary difference equation $(\mathrm{O} \Delta \mathrm{E})$ through travelling-wave reductions [6]. This can be done considering two integers z_{1} and $z_{2}>z_{1}$ which are relatively prime. In the $\left(z_{1}, z_{2}\right)$ travelling-wave reduction the parameters $p_{\ell, m}$ in the matrices $L_{\ell, m}(k)$ and $M_{\ell, m}^{-1}(k)$ depend on the sites (ℓ, m) via the similarity variable $n=z_{1} \ell+z_{2} m$ and we consider periodic solutions of $f_{\ell, m}=0$ satisfying $u_{\ell, m}=u_{\ell-z_{2}, m+z_{1}}$, i.e.

$$
\begin{equation*}
\underline{p}_{\ell, m}=\underline{p}_{n}, \quad u_{\ell, m}=u_{n}, \quad n=z_{1} \ell+z_{2} m \tag{41}
\end{equation*}
$$

and these solutions can be obtained from the $O \Delta E$

$$
\begin{equation*}
f_{n}=f\left(u_{n}, u_{n+z_{1}}, u_{n+z_{2}}, u_{n+z_{1}+z_{2}}, \underline{p}_{n}\right)=0 . \tag{42}
\end{equation*}
$$

The $\mathrm{O} \Delta \mathrm{E}$ can be solved specifying initial values on a standard staircase [6] consisting of points $\left(\ell_{i}, m_{i}\right), i=0,1, \ldots, z_{1}+z_{2}-1$ with $n\left(\ell_{i}, m_{i}\right)=n+n_{i}$ such that every value $n_{i}=0,1, \ldots, z_{1}+z_{2}-1$ occurs exactly once among the n_{i} values on the staircase. In fact, the u_{n} with $n \geqslant z_{1}+z_{2}$ can be obtained from the $\mathrm{O} \Delta \mathrm{E} f_{n+v}=0(v \geqslant 0)$, expressing $u_{n+v+z_{1}+z_{2}}$ in terms of $u_{n+v}, u_{n+v+z_{1}}, u_{n+v+z_{2}}$.

The monodromy matrix \mathcal{L}_{n} is defined to be the ordered product of Lax matrices along a standard staircase (more detail will follow in the next section). From (39) it can be shown that

$$
\begin{equation*}
\text { Trace } \mathcal{L}_{n}^{v}=\operatorname{Trace} \mathcal{L}_{n+1}^{v}, \quad \nu=1,2, \ldots \tag{43}
\end{equation*}
$$

In the special case of 2×2 matrices L_{n}, M_{n}^{-1}, such that $\operatorname{det} \mathcal{L}_{n}$ is trivial, we can restrict ourselves to $v=1$.

Equation (43) is satisfied independently of the value of the spectral parameter k, and the coefficients of the various powers of k appearing in Trace \mathcal{L}_{n} give integrals of the $\mathrm{O} \Delta \mathrm{E} f_{n}=0$. (Note that it is not generally true that all integrals of the $\mathrm{O} \Delta \mathrm{E}$ can be obtained that way. In fact of the four integrals $I_{\alpha}, I_{\beta}, I_{\gamma}, I_{\delta}$ of the mapping (8) in the example of section 2 , only the integral I_{β} follows from the Lax representation of the MKdV reduction associated with (8)). On the other hand, taking the difference between Trace \mathcal{L}_{n} and its shifted version we obtain a relation

$$
\begin{equation*}
\text { Trace } \mathcal{L}_{n}-\operatorname{Trace} \mathcal{L}_{n+1}=f_{n} f_{n}^{*} \tag{44}
\end{equation*}
$$

containing a factor f_{n}^{*}, ensuring that $f_{n}^{*}=0$ implies the vanishing of the lhs as well. By analogy with (6), the equation $f_{n}^{*}=0$ will be called the dual $\mathrm{O} \Delta \mathrm{E}$.

4. Standard staircase and dual $O \Delta E$

We now give a prescription for the dual $\mathrm{O} \Delta \mathrm{E}$ in the case that $z_{1}=1, z_{2}=z, n=l+z m$. In this case, the standard staircase as introduced in [6] can be constructed in the following steps, see, e.g., figure 1.

Figure 1. Standard staircase (-) and shifted staircase ($\circ \circ \circ \circ \circ$) under $n \rightarrow n+1$, in the case $z_{1}=1, z_{2}=6$.

To construct a standard staircase for $z_{1}=1, z_{2}=z$:
(a) we start with the point $\left(\ell_{0}, m_{0}\right)$ with $n\left(\ell_{0}, m_{0}\right)=n+n_{0}, n_{0}=1$;
(b) we do a step to the left, to the point $\left(\ell_{1}, m_{1}\right)=\left(\ell_{0}-1, m_{0}\right)$ with $n\left(\ell_{1}, m_{1}\right)=n+n_{1}$, $n_{1}=0$;
(c) then we do a step upward to the point $\left(\ell_{2}, m_{2}\right)=\left(\ell_{1}, m_{1}+1\right)$ with $n\left(\ell_{2}, m_{2}\right)=n+n_{2}$, $n_{2}=z ;$
(d) next we do $z-2$ steps to the left via points $\left(\ell_{i}, m_{i}\right)=\left(\ell_{0}-i+1, m_{0}+1\right)$ with $n\left(\ell_{i}, m_{i}\right)=n+n_{i}, n_{i}=z-i+2, i=3,4, \ldots, z-1$ to reach the point $\left(\ell_{z}, m_{z}\right)=$ $\left(\ell_{0}-z+1, m_{0}+1\right)$ with $n\left(\ell_{z}, m_{z}\right)=n+n_{z}, n_{z}=2$;
(e) a final step to the left brings us to $\left(\ell_{z+1}, m_{z+1}\right)=\left(\ell_{0}-z, m_{0}+1\right)$ with $n\left(\ell_{z+1}, m_{z+1}\right)=1$. The staircase is thus completed. See figure 1 for an example.
To obtain the monodromy matrix \mathcal{L}_{n} we associate Lax matrices with the steps of the staircase in the following way:
(i) we associate with the first step from $\left(\ell_{0}, m_{0}\right)$ to $\left(\ell_{1}, m_{1}\right)$ the Lax matrix $S\left(n_{0}, n_{1}\right)=L_{n}$;
(ii) with the second step from $\left(\ell_{1}, m_{1}\right)$ to $\left(\ell_{2}, m_{2}\right)$ we associated the Lax matrix $S\left(n_{1}, n_{2}\right)=$ M_{n}^{-1};
(iii) with the $z-2$ steps to the left from $\left(\ell_{i}, m_{i}\right)$ to $\left(\ell_{i+1}, m_{i+1}\right)$ with $i=2, \ldots, z-1$ we associate the Lax matrices $S\left(n_{i}, n_{i+1}\right)=L_{n+z-i+1}$;
(iv) with the final step from $\left(\ell_{z}, m_{z}\right)$ to $\left(\ell_{z+1}, m_{z+1}\right)$ we associate the Lax matrix $S\left(n_{z}, n_{z+1}\right)=$ L_{n+1}.
The monodromy matrix \mathcal{L}_{n} is the ordered product of Lax matrices along the standard staircase

$$
\begin{equation*}
\mathcal{L}_{n}=\prod_{i=0}^{z} S\left(n_{i}, n_{i+1}\right) \tag{45}
\end{equation*}
$$

From the explicit $S\left(n_{i}, n_{i+1}\right)$ we have the factorization property

$$
\begin{equation*}
\mathcal{L}_{n}=L_{n} M_{n}^{-1} A_{n} L_{n+1} \tag{46a}
\end{equation*}
$$

with

$$
\begin{equation*}
A_{n}=L_{n+z-1} L_{n+z-2} \ldots L_{n+2} \tag{46b}
\end{equation*}
$$

The shifted monodromy matrix

$$
\begin{equation*}
\mathcal{L}_{n+1}=\prod_{i=0}^{z} S\left(n_{i}+1, n_{i+1}+1\right) \tag{47a}
\end{equation*}
$$

cf figure 1, can be expressed as

$$
\begin{equation*}
\mathcal{L}_{n+1}=L_{n+1} M_{n+1}^{-1} L_{n+z} A_{n} \tag{47b}
\end{equation*}
$$

and therefore, cf (39)

$$
\begin{equation*}
\mathcal{L}_{n} L_{n+1}^{-1}-L_{n+1}^{-1} \mathcal{L}_{n+1}=\left(L_{n} M_{n}^{-1}-M_{n+1}^{-1} L_{n+z}\right) A_{n}=f_{n} N_{n} A_{n} \tag{48}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\text { Trace } \mathcal{L}_{n}-\operatorname{Trace} \mathcal{L}_{n+1}=f_{n} \text { Trace } N_{n} T_{n} \tag{49a}
\end{equation*}
$$

with

$$
\begin{equation*}
T_{n}=A_{n} L_{n+1}=L_{n+z-1} L_{n+z-2} \ldots L_{n+1} \tag{49b}
\end{equation*}
$$

The dual equation is given by

$$
\begin{equation*}
f_{n}^{*}=\operatorname{Trace} N_{n} T_{n}=0 \tag{50}
\end{equation*}
$$

It is completely determined by the matrix $N_{n}(k)$ in equation (39) and the matrices L in equation (49b). Since Trace \mathcal{L}_{n} is also an integral of the dual equation, we can use the difference to define a dual-dual equation $f_{n}^{* *}=0$ via $\operatorname{Trace} \mathcal{L}_{n}-\operatorname{Trace} \mathcal{L}_{n+1}=f_{n}^{*} f_{n}^{* *}$. In comparing this to equation (44) it is clear that the dual-dual equation $f_{n}^{* *}=0$ is just the original one $f_{n}=0$, provided that the same integrals are used in the construction of the dual and the dual-dual equation.

5. Dual MKdV $O \Delta E$ in the case $z_{1}=1, z_{2}=z$

We now specialize the discussion of the previous two sections to consider the dual $\mathrm{O} \Delta \mathrm{E}$ associated with the MKdV $\operatorname{P} \Delta \mathrm{E} f_{\ell, m}=0$, in the case that $z_{1}=1, z_{2}=z, n=\ell+z m$. The dual equation associated with the more general reduction of the MKdV $\mathrm{P} \Delta \mathrm{E}$ with $z_{2}>z_{1}>1$ can also be investigated. However, this is more complicated and will not be explicitly pursued in this paper.

In the investigation of the dual equation of the $z_{1}=1, z_{2}=z$ reduction of the $\mathrm{MKdVP} \Delta \mathrm{E}$, one may anticipate that the number of parameters appearing in the dual equation will depend on the number of parameters in the original MKdV $\mathrm{P} \triangle \mathrm{E}$, or in the Lax matrices occurring in the associated Lax representation. We therefore choose a rather general inhomogeneous setting in which the Lax matrices $L_{\ell, m}(k), M_{\ell, m}^{-1}(k)$ contain parameters $p_{\ell, m}, r_{\ell, m}, a_{\ell, m}$, $b_{\ell, m}, q_{\ell, m}, s_{\ell, m}, c_{\ell, m}, d_{\ell, m}$. The subscripts indicate a possible dependence of the parameters on the sites (ℓ, m) of the two-dimensional lattice; albeit with such a dependence satisfying compatibility conditions to ensure that a consistent difference equation $f_{\ell, m}=0$ follows from the Lax equation

$$
\begin{equation*}
L_{\ell, m}(k) M_{\ell, m}^{-1}(k)-M_{\ell+1, m}^{-1}(k) L_{\ell, m+1}(k)=0 \tag{51}
\end{equation*}
$$

i.e. equation (39) with the right-hand side replaced by 0 .

To investigate the $z_{1}=1, z_{2}=z$ reduction of the MKdV P $\Delta \mathrm{E}$ with $u_{\ell, m}$ satisfying the periodicity constraint $u_{l, m}=u_{l-z, m+1}=u_{n}, n=l+z m$, we impose the conditions $\underline{p}_{l, m}=\underline{p}_{l-z, m+1}=\underline{p}_{n}$ for $\underline{p}=(p, r, a, b, q, s, c, d)$. That is, all parameters occurring in the $\overline{\text { Lax matrices satisfy }}$ the periodicity constraint also.

Hence we consider the Lax matrices

$$
L_{\ell, m}(k)=\left(\begin{array}{cc}
p_{n} & -a_{n} u_{\ell+1, m} \tag{52}\\
\frac{-k^{2} b_{n}}{u_{\ell, m}} & r_{n} \frac{u_{\ell+1, m}}{u_{\ell, m}}
\end{array}\right), \quad M_{\ell, m}^{-1}(k)=\left(\begin{array}{cc}
s_{n} & d_{n} u_{\ell, m} \\
\frac{k^{2} c_{n}}{u_{\ell, m+1}} & q_{n} \frac{u_{\ell, m}}{u_{\ell, m+1}}
\end{array}\right) .
$$

The special case of (52): $p_{\ell, m}=p, r_{\ell, m}=r, q_{\ell, m}=q, s_{\ell, m}=s, a_{\ell, m}=b_{\ell, m}=c_{\ell, m}=$ $d_{\ell, m}=1$, was investigated in [1] in an investigation of four-dimensional mappings satisfying a specific symplectic structure (as a generalization of [6]). Working out the $(1,1)$ and $(2,2)$ elements of condition (51) and insisting that the $(1,2)$ and $(2,1)$ elements of this condition lead to the same difference equation, we are led to the compatibility conditions

$$
\begin{equation*}
s_{n+1}=\frac{p_{n}}{p_{n+z}} s_{n}, \quad q_{n+1}=\frac{r_{n}}{r_{n+z}} q_{n}, \quad d_{n+1}=\frac{a_{n}}{b_{n+z}} c_{n}, \quad c_{n+1}=\frac{b_{n}}{a_{n+z}} d_{n} \tag{53}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{n}:=k^{2} \frac{a_{n} b_{n}}{p_{n} r_{n}}=k_{n+z}, \tag{54a}
\end{equation*}
$$

or equivalently with (53)

$$
\begin{equation*}
1_{n}:=\frac{c_{n} d_{n}}{q_{n} s_{n}}=1_{n+1}=1 \tag{54b}
\end{equation*}
$$

Under these conditions, we have equation (39) with

$$
\begin{equation*}
f_{\ell, m}=p_{n} d_{n}-a_{n} q_{n} \frac{u_{\ell+1, m}}{u_{\ell, m+1}}+\frac{u_{\ell+1, m+1}}{u_{\ell, m}}\left(a_{n+z} s_{n+1}-d_{n+1} r_{n+z} \frac{u_{\ell+1, m}}{u_{\ell, m+1}}\right) \tag{55a}
\end{equation*}
$$

The equation $f_{\ell, m}=0$ with $f_{\ell, m}$ given by ($55 a$) is a general inhomogeneous version of the MKdV partial-difference equation of $[1,6]$ with parameters p depending on the sites (ℓ, m) via the similarity variable n. Under conditions (53), (54) for the parameters, it has the Lax representation (39) with the matrices $L_{\ell, m}(k)$ and $M_{\ell, m}^{-1}(k)$ given by (52) and the matrix $N_{\ell, m}(k)$ given by

$$
N_{\ell, m}(k)=\left(\begin{array}{cc}
0 & u_{\ell, m} \tag{55b}\\
\frac{-k^{2}}{u_{\ell+1, m+1}} \frac{b_{n}}{a_{n+2}} \frac{p_{n+z}}{p_{n}} & 0
\end{array}\right) .
$$

In the travelling-wave reduction $z_{1}=1, z_{2}=z$, (55) reduces to the primary $\operatorname{MKdV} \mathrm{O} \Delta \mathrm{E}$

$$
\begin{equation*}
f_{n}=0 \tag{56a}
\end{equation*}
$$

with

$$
\begin{equation*}
f_{n}=p_{n} d_{n}-a_{n} q_{n} \frac{u_{n+1}}{u_{n+z}}+\frac{u_{n+1+z}}{u_{n}}\left(a_{n+z} s_{n+1}-d_{n+1} r_{n+z} \frac{u_{n+1}}{u_{n+z}}\right) . \tag{56b}
\end{equation*}
$$

The dual equation follows from (50) and (55b) and is given by

$$
\begin{equation*}
f_{n}^{*}=0, \tag{57a}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{n}^{*}=t_{21} u_{n}-\frac{b_{n}}{a_{n+z}} \frac{p_{n+z}}{p_{n}} \frac{k^{2}}{u_{n+z+1}} t_{12} \tag{57b}
\end{equation*}
$$

and t_{12} and t_{21} are the off-diagonal elements of the matrix T_{n}, defined by (49b).
Evaluating the off-diagonal elements of the matrix T_{n} it can be shown that the dual MKdV $\mathrm{O} \Delta \mathrm{E}(57)$ can be expressed as a $(z-1)$-dimensional mapping in terms of the reduced variables

$$
\begin{equation*}
W_{n+\nu}=\frac{r_{n+v}}{a_{n+v}} \frac{a_{n+v+1}}{p_{n+v+1}} \frac{u_{n+v+2}}{u_{n+v}} . \tag{58}
\end{equation*}
$$

We have

$$
\begin{equation*}
\frac{W_{n+z-1}}{W_{n}}=k_{n} \frac{Z_{12}\left(W_{n+1}, W_{n+2}, \ldots, W_{n+z-2}\right)}{Z_{21}\left(W_{n+1}, W_{n+2}, \ldots, W_{n+z-2}\right)} \tag{59}
\end{equation*}
$$

in which Z_{12} and Z_{21} are the off-diagonal elements of the matrix

$$
\begin{gather*}
Z\left(W_{n+1}, W_{n+2}, \ldots, W_{n+z-2}\right)=\left(\begin{array}{cc}
1 & 1 \\
k_{n+z-1} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
k_{n+z-2} W_{n+z-2} & W_{n+z-2}
\end{array}\right) \\
\times\left(\begin{array}{cc}
1 & 1 \\
k_{n+z-3} W_{n+z-3} & W_{n+z-3}
\end{array}\right) \cdots\left(\begin{array}{cc}
1 & 1 \\
k_{n+1} W_{n+1} & W_{n+1}
\end{array}\right), \tag{60}
\end{gather*}
$$

cf appendix A for some details of the derivation.
In equation (59) the numerator Z_{12} and denominator Z_{21} are multilinear functions containing all 2^{z-2} terms $W_{n+1}^{\mu_{1}} W_{n+2}^{\mu_{2}} \ldots W_{n+z-2}^{\mu_{z-2}}, \mu_{1}, \mu_{2}, \ldots, \mu_{z-2}=0$, 1 , with coefficients depending on $k_{n+1}, k_{n+2}, \ldots, k_{n+z-1}$.

For example for $z=3,4,5$, we have respectively

$$
\begin{align*}
& z=3: \quad Z_{12}\left(W_{n+1}\right)=1+W_{n+1} \\
& Z_{21}\left(W_{n+1}\right)=k_{n+2}+k_{n+1} W_{n+1} \\
& z=4: \quad Z_{12}\left(W_{n+1}, W_{n+2}\right)=1+W_{n+1}+W_{n+2}\left(k_{n+2}+W_{n+1}\right) \\
& Z_{21}\left(W_{n+1}, W_{n+2}\right)=k_{n+3}\left(1+k_{n+1} W_{n+1}\right)+W_{n+2}\left(k_{n+2}+k_{n+1} W_{n+1}\right) \\
& z=5: \quad Z_{12}\left(W_{n+1}, W_{n+2}, W_{n+3}\right)=\left(1+k_{n+3} W_{n+3}\right)\left(1+W_{n+1}\right) \\
& +W_{n+2}\left(1+W_{n+3}\right)\left(k_{n+2}+W_{n+1}\right) \\
& Z_{21}\left(W_{n+1}, W_{n+2}, W_{n+3}\right)=\left(k_{n+4}+k_{n+3} W_{n+3}\right)\left(1+k_{n+1} W_{n+1}\right) \\
& +W_{n+2}\left(k_{n+4}+W_{n+3}\right)\left(k_{n+2}+k_{n+1} W_{n+1}\right) . \tag{61}
\end{align*}
$$

6. Integrability of the dual MKdV

To prove that the dual MKdV O $\Delta \mathrm{E}$ is integrable we first construct two integrals $\mathcal{J}_{s}, \mathcal{J}_{q}$ and two 2-integrals ${ }^{7} \mathcal{J}_{c_{n}}, \mathcal{J}_{d_{n}}$ satisfying $\mathcal{J}_{c_{n+1}}=\mathcal{J}_{d_{n}}, \mathcal{J}_{d_{n+1}}=\mathcal{J}_{c_{n}}$.

From equations (46a), (49b), (50), it is clear that the parameters $\left\{s_{n}, c_{n}, d_{n}, q_{n}\right\}$ in the matrix M_{n}^{-1} in Trace \mathcal{L}_{n} dissociate from the parameters $p_{n}, a_{n}, b_{n}, r_{n}$ occurring in the matrices L and the dual equation. To investigate the integrals of the dual equation it is therefore worthwhile to consider the decomposition

$$
\begin{equation*}
\text { Trace } \mathcal{L}_{n}=\mathcal{J}_{s_{n}}+\mathcal{J}_{c_{n}}+\mathcal{J}_{d_{n}}+\mathcal{J}_{q_{n}} \tag{62}
\end{equation*}
$$

in which $\mathcal{J}_{s_{n}}, \mathcal{J}_{c_{n}}, \mathcal{J}_{d_{n}}, \mathcal{J}_{q_{n}}$ are terms arising from elements $s_{n}, c_{n}, d_{n}, q_{n}$ of the matrix M_{n}^{-1} in Trace $\mathcal{L}_{n}=\operatorname{Trace} L_{n} M_{n}^{-1} T_{n}$.

Here using (52), and involving the matrix elements $t_{i j}$ of T_{n}, we have

$$
\left(\begin{array}{ll}
\frac{\mathcal{J}_{s_{n}}}{s_{n}} & \frac{\mathcal{J}_{c_{n}}}{k^{2} c_{n}} \tag{63}\\
\frac{\mathcal{J}_{d_{n}}}{d_{n}} & \frac{\mathcal{J}_{q_{n}}}{q_{n}}
\end{array}\right)=\left(\begin{array}{cc}
t_{11} & \frac{t_{12}}{u_{n}} \\
t_{21} u_{n} & t_{22}
\end{array}\right)\left(\begin{array}{cc}
p_{n} & -a_{n} \frac{u_{n+1}}{u_{n+2}} \\
-k^{2} b_{n} & r_{n} \frac{u_{n+1}}{u_{n+z}}
\end{array}\right) .
$$

Introducing
$J_{s_{n}}=\mathcal{J}_{s_{n}} / s_{n}, \quad J_{c_{n}}=\mathcal{J}_{c_{n}} / c_{n}, \quad J_{d_{n}}=\mathcal{J}_{d_{n}} / d_{n}, \quad J_{q_{n}}=\mathcal{J}_{q_{n}} / q_{n}$
and using equation (53) to express $s_{n+1}, q_{n+1}, d_{n+1}, c_{n+1}$ in terms of $s_{n}, q_{n}, c_{n}, d_{n}$, we find from (49a) and (50) that if the dual equation is satisfied then

$$
\begin{align*}
0=\text { Trace } \mathcal{L}_{n} & -\operatorname{Trace} \mathcal{L}_{n+1}=s_{n}\left\{J_{s_{n}}-\frac{p_{n}}{p_{n+z}} J_{s_{n+1}}\right\}+q_{n}\left\{J_{q_{n}}-\frac{r_{n}}{r_{n+z}} J_{q_{n+1}}\right\} \\
& +c_{n}\left\{J_{c_{n}}-\frac{a_{n}}{b_{n+z}} J_{d_{n+1}}\right\}+d_{n}\left\{J_{d_{n}}-\frac{b_{n}}{a_{n+z}} J_{c_{n+1}}\right\} . \tag{65}
\end{align*}
$$

Since the matrices $L_{n+1}, L_{n+2}, \ldots, L_{n+z-1}$ and N_{n} occurring in the dual equation do not contain any of the parameters $s_{n}, q_{n}, c_{n}, d_{n}$, equation (65) must be valid independently of the choice of $s_{n}, q_{n}, c_{n}, d_{n}$. This means that
$J_{s_{n}}=\frac{p_{n}}{p_{n+z}} J_{s_{n+1}}, \quad J_{q_{n}}=\frac{r_{n}}{r_{n+z}} J_{q_{n+1}}, \quad J_{c_{n}}=\frac{a_{n}}{b_{n+z}} J_{d_{n+1}}, \quad J_{d_{n}}=\frac{b_{n}}{a_{n+z}} J_{c_{n+1}}$
and hence, using again (53) and (64),

$$
\begin{equation*}
\mathcal{J}_{s_{n}}=\mathcal{J}_{s_{n+1}}:=\mathcal{J}_{s}, \quad \mathcal{J}_{q_{n}}=\mathcal{J}_{q_{n+1}}:=\mathcal{J}_{q}, \quad \mathcal{J}_{c_{n}}=\mathcal{J}_{d_{n+1}}, \quad \mathcal{J}_{d_{n}}=\mathcal{J}_{c_{n+1}} \tag{67}
\end{equation*}
$$

[^2]From equation (63) we can solve the off-diagonal elements t_{12}, t_{21} of the matrix T_{n} to obtain

$$
\begin{equation*}
\frac{1}{u_{n}^{2}} \frac{t_{12}}{t_{21}}=\frac{a_{n} \frac{\mathcal{J}_{s_{n}}}{s_{n}} \frac{u_{n+1}}{u_{n+z}}+\frac{p_{n}}{k^{2}} \frac{\mathcal{J}_{c_{n}}}{c_{n}}}{k^{2} b_{n} \frac{\mathcal{J}_{n n}}{q_{n}}+r_{n} \frac{\mathcal{J}_{n}}{d_{n}} \frac{u_{n+1}}{u_{n+2}}} \tag{68}
\end{equation*}
$$

Inserting this in the dual MKdV (57), including the factor a_{n+z} / b_{n} in the denominator and the factor p_{n+z} / p_{n} in the numerator and using (53) yields

$$
\begin{equation*}
\frac{u_{n+z+1}}{u_{n}}=\frac{k^{2} a_{n} \frac{\mathcal{J}_{s_{n}}}{s_{n+1}} \frac{u_{n+1}}{u_{n+z}}+p_{n+z} \frac{\mathcal{J}_{c_{n}}}{c_{n}}}{k^{2} a_{n+z} \frac{\mathcal{J}_{q_{n}}}{q_{n}}+r_{n} \frac{\mathcal{J}_{d_{n}}}{u_{n+1}} u_{n+1}} . \tag{69}
\end{equation*}
$$

Equation (69) is very similar to the $\mathrm{MKdV} \mathrm{O} \Delta \mathrm{E}$ (56). To prove its integrability we rewrite it as follows, recalling (54b):

$$
\begin{equation*}
\frac{u_{n+z+1}}{u_{n}}=\frac{k^{2} a_{n} q_{n} \mathcal{J}_{s_{n}} \frac{u_{n+1}}{n}+p_{n} d_{n} 1^{-1} \mathcal{J}_{c_{n}}}{k^{2} a_{n+z} s_{n+1} \mathcal{J}_{q_{n}}+r_{n+z} d_{n+1} 1^{-1} \mathcal{J}_{d_{n}} \frac{u_{n+1}}{u_{n+z}}} . \tag{70}
\end{equation*}
$$

Equation (70) is the travelling-wave reduction $u_{\ell, m} \rightarrow u_{\ell+z m}=u_{n}$ of the $\mathrm{P} \Delta \mathrm{E}$

$$
\begin{equation*}
\frac{u_{\ell+1, m+1}}{u_{\ell, m}}=\frac{a_{n} q_{n}^{*} \frac{u_{\ell+1, m}}{u_{\ell, m+1}}-p_{n} d_{n}^{*}}{a_{n+z} z_{n+1}^{*}-r_{n+z} d_{n+1}^{*} \frac{u_{\ell+1, m}}{u_{\ell, m+1}}} \tag{71a}
\end{equation*}
$$

with

$$
\begin{array}{ll}
q_{n}^{*}=k^{2} q_{n} \mathcal{J}_{s}, & d_{n}^{*}=-d_{n} I^{-1} \mathcal{J}_{c_{n}}, \tag{71b}\\
s_{n+1}^{*}=k^{2} s_{n+1} \mathcal{J}_{q}, & d_{n+1}^{*}=-d_{n+1} I^{-1} \mathcal{J}_{d_{n}}
\end{array}
$$

Since (71a) is identical to (55a), it follows that in order for (71a) to be integrable via a Lax representation, we must impose the compatibility conditions
$\frac{s_{n+1}{ }^{*}}{s_{n}{ }^{*}}=\frac{p_{n}}{p_{n+z}}, \quad \frac{q_{n+1}{ }^{*}}{q_{n}{ }^{*}}=\frac{r_{n}}{r_{n+z}}, \quad \frac{d_{n+1}{ }^{*}}{c_{n}{ }^{*}}=\frac{a_{n}}{b_{n+z}}, \quad \frac{c_{n+1}{ }^{*}}{d_{n}{ }^{*}}=\frac{b_{n}}{a_{n+z}}$.
Defining

$$
\begin{equation*}
c_{n}^{*}=-c_{n} \mathcal{J}_{d_{n}} \mathrm{I}^{-1} \tag{73}
\end{equation*}
$$

and using (53) and (67) it follows with (71b) that this condition is indeed satisfied. Comparing (71) and (72) with (55a) and (53) it follows that the matrices

$$
L_{\ell, m}\left(k^{*}\right)=\left(\begin{array}{cc}
p_{n} & -a_{n} u_{\ell+1, m} \tag{74a}\\
\frac{-k^{*} b_{n}}{u_{\ell, m}} & r_{n} \frac{u_{\ell+1, m}}{u_{\ell, m}}
\end{array}\right)
$$

and

$$
M_{\ell, m}^{*-1}\left(k^{*}\right)=\left(\begin{array}{cc}
s_{n}^{*} & d_{n}^{*} u_{\ell, m} \tag{74b}\\
\frac{k^{*} c_{n}^{*}}{u_{\ell, m+1}} & q_{n}^{*} \frac{u_{\ell, m}}{u_{\ell, m+1}}
\end{array}\right),
$$

in which k^{*} is a new spectral parameter, satisfy the relation

$$
\begin{align*}
& L_{\ell, m}\left(k^{*}\right) M_{\ell, m}^{*-1}\left(k^{*}\right)-M_{\ell+1, m}^{*-1}\left(k^{*}\right) L_{\ell, m+1}\left(k^{*}\right) \\
& \quad=\left(p_{n} d_{n}^{*}-a_{n} q_{n}^{*} \frac{u_{\ell+1, m}}{u_{\ell, m+1}}+\frac{u_{\ell+1, m+1}}{u_{\ell, m}}\left(a_{n+z} s_{n+1}^{*}-d_{n+1}^{*} r_{n+z} \frac{u_{\ell+1, m}}{u_{\ell, m+1}}\right)\right) N_{\ell, m}\left(k^{*}\right) . \tag{75}
\end{align*}
$$

This means that equation (71) has a Lax representation in terms of the matrices $L_{\ell, m}\left(k^{*}\right)$ and $M_{\ell, m}^{*-1}\left(k^{*}\right)$ and this can be used to evaluate the monodromy matrix \mathcal{L}_{n}^{*} for the travelling-wave
reduction (70) built up from these matrices. From Trace \mathcal{L}_{n}^{*}, one can obtain additional integrals of the dual MKdV O $\Delta \mathrm{E}$ for larger values of z.

The parameters $\mathcal{J}_{s}, \mathcal{J}_{c_{n}}, \mathcal{J}_{d_{n}}$ and \mathcal{J}_{q} can be determined specifying the initial conditions for $u_{n}, u_{n+1}, \ldots, u_{n+z}$ on a standard staircase. Because of this, equation (29) will be called the level-set-dependent (LSD) MKdV O $\Delta \mathrm{E}$.

The term level-set-dependent relates to a concept introduced in [3, 4]. Given two $\mathrm{O} \Delta \mathrm{Es}$, with $\mathrm{O} \Delta \mathrm{E}(2)$ possessing integrals, we will say

$$
\begin{equation*}
\mathrm{O} \Delta \mathrm{E}(2)=\mathrm{LSD} \mathrm{O} \Delta \mathrm{E}(1), \tag{76}
\end{equation*}
$$

if $O \Delta E$ (2) acts on the level sets of its integrals as $O \Delta E$ (1). The idea is that an initial condition for $\mathrm{O} \Delta \mathrm{E}$ (2) determines the values of the integrals of $\mathrm{O} \Delta \mathrm{E}$ (2). Then the ensuing motion can be described by a simpler (and possibly integrable) $\mathrm{O} \Delta \mathrm{E}$ (1). This is completely analogous to the two-dimensional setting of [3, 4] in which it was shown that each QRT map actually acts as a generalized McMillan map on the level sets of the QRT integral. Here we have shown that the dual MKdV map acts as a MKdV map on the level sets of the integrals $\mathcal{J}_{s}, \mathcal{J}_{q}$ and the 2-integrals $\mathcal{J}_{c_{n}}=\mathcal{J}_{d_{n+1}}$ and $\mathcal{J}_{d_{n}}=\mathcal{J}_{c_{n+1}}$.

The explicit expressions for $\mathcal{J}_{s}, \mathcal{J}_{q}, \mathcal{J}_{c_{n}}$ and $\mathcal{J}_{d_{n}}$ are given by ${ }^{8}$
$\mathcal{J}_{s}=S\left(Z_{11}+k_{n} W_{n} Z_{12}\right), \quad \quad \mathcal{J}_{q}=\frac{Q\left(Z_{21}+W_{n} Z_{22}\right)}{W_{n} W_{n+1} \ldots W_{n+z-2}}$
$\mathcal{J}_{c_{n}}=-k^{2} C_{n} S\left(Z_{11}+W_{n} Z_{12}\right) \frac{u_{n+1}}{u_{n+z}}, \quad \mathcal{J}_{d_{n}}=-C_{n}^{-1} 1 Q \frac{\left(Z_{21}+k_{n} W_{n} Z_{22}\right)}{W_{n} W_{n+1} \ldots W_{n+z-2}} \frac{u_{n+z}}{u_{n+1}}$,
in which the $W_{n+\nu}$ have been defined by (58) and $Z_{\alpha \beta}=Z_{\alpha \beta}\left(W_{n+1}, W_{n+2}, \ldots, W_{n+z-2}\right)$ are matrix elements of the matrix Z defined by (60).

The parameter C_{n} is defined by

$$
\begin{equation*}
C_{n}=\frac{c_{n} a_{n}}{s_{n} p_{n}} \tag{78}
\end{equation*}
$$

and the constants Q and S by

$$
\begin{array}{ll}
S_{n}=p_{n} p_{n+1} \ldots p_{n+z-1} s_{n}=S & \left(S_{n+1} / S_{n}=1\right) \\
Q_{n}=r_{n} r_{n+1} \ldots r_{n+z-1} \cdot q_{n}=Q & \left(Q_{n+1} / Q_{n}=1\right) \tag{79}
\end{array}
$$

Some details of the derivation of (77) are presented in appendix B.
In summary, we have considered the dual $\mathrm{MKdV} \mathrm{O} \Delta \mathrm{E}$ associated with the $z_{1}=1, z_{2}=z$ similarity reduction of the $\mathrm{MKdV} \mathrm{P} \Delta \mathrm{E}$. These considerations can be extended to more general similarity reductions $z_{1}>1$. Also there, the dual $\mathrm{MKdV} \mathrm{O} \Delta \mathrm{E}$ can be expressed as a generalized MKdV with parameters \mathcal{J} depending on the initial conditions but in the general case we do not anticipate relations like (67) ensuring the existence of a Lax representation and consequently the integrability of the dual MKdV O $\Delta \mathrm{E}$. The present treatment can also be adapted to the SG case with only minor variations.

7. Concluding remarks

We have studied the dual MKdV $\mathrm{O} \Delta \mathrm{E}$ associated with the $z_{1}=1, z_{2}=z$ similarity reduction of the MKdV P $\Delta \mathrm{E}$. This dual equation is an integrable system, since it is the LSD version of the MKdV O $\Delta \mathrm{E}$. In this LSD version, there appear the integrals $\mathcal{J}_{s}, \mathcal{J}_{q}$ and the 2-integrals $\mathcal{J}_{c_{n}}=\mathcal{J}_{d_{n+1}}$ and $\mathcal{J}_{d_{n}}=\mathcal{J}_{c_{n+1}}$ of the dual MKdV which follow from the trace of the monodromy matrix. The dual MKdV has a Lax representation that is obtained from the Lax representation (52) of the MKdV P $\Delta \mathrm{E}$ using the substitutions (71b) which involve the integrals $\mathcal{J}_{s}, \mathcal{J}_{q}$ and

[^3]the 2-integrals $\mathcal{J}_{c_{n}}, \mathcal{J}_{d_{n}}$, and introduces a new spectral parameter. The (reduced variable) dual MKdV (59), (60) contains the parameters k_{n}, \ldots, k_{n+z-1}, defined by (54a). In the homogeneous case, this set of parameters reduces only to the single parameter k. However, it is worthwhile to note that the dual equation has been obtained using the trace of the monodromy matrix
\[

$$
\begin{equation*}
\text { Trace } T_{n}=\sum_{m} k^{2 m} I_{m} \tag{80}
\end{equation*}
$$

\]

in which the integrals I_{m} of the original $\mathrm{MKdV} \mathrm{O} \Delta \mathrm{E}$ are the coefficients of different powers of the spectral parameter. Rather than considering the special case of (80), one can also start from an arbitrary linear combination of integrals

$$
\begin{equation*}
I=\sum_{m} \alpha_{m} I_{m} \tag{81}
\end{equation*}
$$

and the dual MKdV in the homogeneous case can be inferred from (59)-(60) by replacing $k^{2 m}$ by the parameter α_{m}. In this way, the family of dual MKdV mappings for increasing z will contain an increasing number of parameters α_{m}, but the existence of a Lax representation is not obvious in this more general case.

Finally, it may be noted that the dual equations (59), (60) have been obtained taking into account only the integrals of the $\mathrm{MKdV} \mathrm{O} \Delta \mathrm{E}$ that appear in the trace of the monodromy matrix. However, in special cases, the $\mathrm{MKdV} \mathrm{O} \Delta \mathrm{E} f_{n}=0$ of (56) may have additional integrals which can be inferred from the work of Hydon [2] or by considering homogeneous expressions in the variables u of various degrees. This would then lead to a dual equation in the variables u with more parameters, similar to the case of the motivating example of section 2. But in that case the Lax representation (74) and LSD description (70) are no longer valid and the integrability of the dual equation is open.

We conclude with some remarks:

- The considerations in this paper can be applied to the $z_{1}=1, z_{2}=z$ reductions of other $\mathrm{P} \Delta \mathrm{E}$ as well. For instance, for the reduction of the integrable $\mathrm{SG} \mathrm{P} \Delta \mathrm{E}$, the dual equation can be expressed as a LSD SG $\mathrm{O} \Delta \mathrm{E}$ and a Lax representation is obtained by simple substitutions from the Lax representation of the $\mathrm{SG} \mathrm{O} \Delta \mathrm{E}$. Also the dual of the $z_{1}=1, z_{2}=z$ reduction of the $\mathrm{KdV} \mathrm{P} \Delta \mathrm{E}$ can be investigated in a similar way.
- The treatment in this paper can also be extended to more general reductions with $z_{1}>1$ of the $\mathrm{MKdV} \operatorname{P} \triangle \mathrm{E}$. The dual equation can be obtained from the trace of the monodromy matrix and one can show that the dual equation can be regarded as an extended version of the MKdV O $\Delta \mathrm{E}$ as given by (70) with the coefficients $\mathcal{J}_{s_{n}}, \mathcal{J}_{q_{n}}, \mathcal{J}_{c_{n}}$ and $\mathcal{J}_{d_{n}}$ explicitly given in terms of the variables u_{n}. In this general case, however, the reasoning leading to a condition of the type (66) is no longer applicable and there is no direct relation between the coefficients $\mathcal{J}_{s_{n}}, \mathcal{J}_{q_{n}}, \mathcal{J}_{c_{n}}$ and $\mathcal{J}_{d_{n}}$ and the integrals of the dual MKdV. So in this case the extended MKdV equation (70) cannot be interpreted as an LSD MKdV equation and also a Lax representation like (75) does not apply. Hence, at this stage, the integrability of the dual MKdV equation for $z_{1}>1$ has not been proved. It is interesting to note, however, that the $z_{1}=2, z_{2}=3$ reduction of the $\mathrm{MKdV} \mathrm{P} \Delta \mathrm{E}$ leads to a dual equation which is a four-dimensional mapping that is superintegrable by the existence of two integrals $I_{n}=I_{n+1}, J_{n}=J_{n+1}$ and two coupled 2-integrals $G_{n}=H_{n+1}, H_{n}=G_{n+1}$. We hope to investigate the integrability of the more general cases in the near future.
- From (76), it follows that each orbit of $\mathrm{O} \Delta \mathrm{E}$ (2) corresponds to an orbit of $\mathrm{O} \Delta \mathrm{E}$ (1) restricted to a particular intersection of level sets of the integrals of $\mathrm{O} \Delta \mathrm{E}$ (2). This shows that considered 'orbit-by-orbit' $\mathrm{O} \Delta \mathrm{E}(2)$ is solvable, and in that sense integrable, if $\mathrm{O} \Delta \mathrm{E}$
(1) is. For example, if $\mathrm{O} \Delta \mathrm{E}$ (2) is a rational map, each of its orbits will have vanishing algebraic entropy, thus passing this test. However, on the face of it, LSD integrability does not imply symplecticity or Liouville integrability of $\mathrm{O} \Delta \mathrm{E}$ (2), as these refer to global structures of $\mathrm{O} \Delta \mathrm{E}(2)$ by which orbits are assembled together.

Appendix A

To prove equation (59) we first express the Lax matrix $L_{n+v}(k), \mathrm{cf}(52)$, as
$L_{n+v}(k)=p_{n+v}\left(\begin{array}{cc}1 & 0 \\ 0 & -\frac{p_{n+v+1}}{a_{n+v+1}} \frac{1}{u_{n+v+2}} .\end{array}\right)\left(\begin{array}{cc}1 & 1 \\ k_{n+v} W_{n+v} & W_{n+v}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & -\frac{a_{n+v}}{p_{n+v}} u_{n+v+1}\end{array}\right)$.
Then from (49b) we have

$$
\begin{align*}
T_{n}=p_{n+1} p_{n+2} & \ldots p_{n+z-1}\left(\begin{array}{ccc}
1 & 0 \\
0 & -\frac{p_{n+z}}{a_{n+z}} \frac{1}{u_{n+z+1}}
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
k_{n+z-1} W_{n+z-1} & W_{n+z-1}
\end{array}\right) \\
& \times\left(\begin{array}{cc}
1 & 1 \\
k_{n+z-2} W_{n+z-2} & W_{n+z-2}
\end{array}\right) \cdots\left(\begin{array}{cc}
1 & 1 \\
k_{n+1} W_{n+1} & W_{n+1}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -\frac{a_{n+1}}{p_{n+1}} u_{n+2}
\end{array}\right) \tag{A2}
\end{align*}
$$

which can be expressed as

$$
T_{n}=p_{n+1} \ldots p_{n+z-1}\left(\begin{array}{cc}
1 & 0 \tag{A3}\\
0 & -\frac{r_{n+z-1}}{a_{n+z-1}} \frac{1}{u_{n+z-1}}
\end{array}\right) Z\left(\begin{array}{cc}
1 & 0 \\
0 & -\frac{a_{n+1}}{p_{n+1}} u_{n+2}
\end{array}\right)
$$

in which the matrix Z has been defined by (60).
From (A3) and (57) we then obtain

$$
\begin{equation*}
u_{n+z+1}=\frac{k^{2} b_{n}}{a_{n+z}} \frac{p_{n+z}}{p_{n}} \frac{Z_{12}}{Z_{21}} \frac{a_{n+1}}{p_{n+1}} \frac{a_{n+z-1}}{r_{n+z-1}} \frac{u_{n+2} u_{n+z-1}}{u_{n}} \tag{A4}
\end{equation*}
$$

which with (54a) and (58) yields (59).

Appendix B

From equations (63) and (A3) we obtain the relations

$$
\begin{align*}
& \mathcal{J}_{s_{n}}=S\left(Z_{11}+k_{n} \frac{r_{n}}{a_{n}} \frac{a_{n+1}}{p_{n+1}} \frac{u_{n+2}}{u_{n}} Z_{12}\right) \\
& \mathcal{J}_{q_{n}}=S \frac{q_{n}}{s_{n}} \frac{a_{n}}{p_{n}} \frac{r_{n+z-1}}{a_{n+z-1}} \frac{u_{n} u_{n+1}}{u_{n+z-1} u_{n+z}}\left(Z_{21}+\frac{r_{n}}{a_{n}} \frac{a_{n+1}}{p_{n+1}} \frac{u_{n+2}}{u_{n}} Z_{22}\right) \tag{B1}\\
& \mathcal{J}_{c_{n}}=-k^{2} S \frac{c_{n} a_{n}}{s_{n} p_{n}}\left(Z_{11}+\frac{r_{n}}{a_{n}} \frac{a_{n+1}}{p_{n+1}} \frac{u_{n+2}}{u_{n}} Z_{12}\right) \frac{u_{n+1}}{u_{n+z}} \\
& \mathcal{J}_{d_{n}}=-S \frac{d_{n}}{s_{n}} \frac{r_{n+z-1}}{a_{n+z-1}} \frac{u_{n}}{u_{n+z-1}}\left(Z_{21}+k_{n} \frac{r_{n}}{a_{n}} \frac{a_{n+1}}{p_{n+1}} \frac{u_{n+2}}{u_{n}} Z_{22}\right)
\end{align*}
$$

and equations (77) can be derived using (58) and the relation

$$
\begin{equation*}
\frac{u_{n} u_{n+1}}{u_{n+z-1} u_{n+z}}=\frac{a_{n+z-1}}{a_{n}} \frac{r_{n} r_{n+1} \ldots r_{n+z-2}}{p_{n+1} p_{n+2} \ldots p_{n+z-1}} \frac{1}{W_{n} W_{n+1} \ldots W_{n+z-2}} \tag{B2}
\end{equation*}
$$

Acknowledgments

GRWQ acknowledges helpful discussions with P Hydon and C Viallet and support by the Australian Research Council. HWC gratefully acknowledges the hospitality of the

Mathematics Department, La Trobe University. JAGR gratefully acknowledges the hospitality of the Instituut voor Theoretische Fysica, Universiteit van Amsterdam.

References

[1] Capel H W and Sahadevan R 2001 A new family of four dimensional symplectic and integrable mappings Physica A 289 86-106
[2] Hydon P E 2001 Private communication
[3] Iatrou A and Roberts J A G 2001 Integrable mappings of the plane preserving biquadratic invariant curves J. Phys. A: Math. Gen. 34 6617-36
[4] Iatrou A and Roberts J A G 2002 Integrable mappings of the plane preserving biquadratic invariant curves II Nonlinearity 15 459-89
[5] Papageorgiou V G, Nijhoff F W and Capel H W 1990 Integrable mappings and nonlinear integrable lattice equations Phys. Lett. A 147 106-14
[6] Quispel G R W, Capel H W, Papageorgiou V G and Nijhoff F W 1991 Integrable mappings derived from soliton equations Physica A 173 243-66
[7] Quispel G R W, Roberts J A G and Thompson C J 1988 Integrable mappings and soliton equations Phys. Lett. A 126 419-21
[8] Quispel G R W, Roberts J A G and Thompson C J 1989 Integrable mappings and soliton equations II Physica D 34 183-92
[9] Roberts J A G, Iatrou A and Quispel G R W 2002 Interchanging parameters and integrals in dynamical systems: the mapping case J. Phys. A: Math. Gen. 35 2309-25
[10] Bruschi M, Ragnisco O, Santini P M and Gui-Zhang Tu 1991 Integrable symplectic maps Physica D 49 273-94
[11] Grammaticos B, Nijhoff F W and Ramani A 1999 Discrete Painleve equations The Painleve Property: One Century Later ed R Conte (New York: Springer) pp 413-516
[12] Quispel G R W, Nijhoff F W, Capel N W and Van der Linden J 1984 Linear integral equations and nonlinear difference-difference equations Physica A 125 344-80
[13] Ablowitz M J and Ladik F J 1976 A nonlinear difference scheme and inverse scattering Stud. Appl. Math. 55 213-29
Ablowitz M J and Ladik F J 1977 On the solution of a class of nonlinear partial difference equations Stud. Appl. Math. 57 1-12
[14] Hirota R 1977 Nonlinear partial difference equations I-III J. Phys. Soc. Japan 43 1424-33, 2074-86
[15] Date E, Jimbo M and Miwa T 1982 Method for generating discrete soliton equations I-II J. Phys. Soc. Japan 51 4116-31
Date E, Jimbo M and Miwa T 1983 Method for generating discrete soliton equations III J. Phys. Soc. Japan 52 388-93
Date E, Jimbo M and Miwa T 1983 Method for generating discrete soliton equations IV-V J. Phys. Soc. Japan 52 761-71
[16] Roberts J A G and Vivaldi F 2003 Arithmetical method to detect integrability in maps Phys. Rev. Lett. 90034102
[17] Roberts J A G, Jogia D and Vivaldi F 2003 The hasse-weil bound and integrability detection in rational maps J. Nonl. Math. Phys. 10 166-80
[18] Iatrou A 2003 Higher-dimensional integrable mappings Physica D 179 229-53
[19] Haggar F A, Byrnes G B, Quispel G R W and Capel H W 1996 k-integrals and k-symmetries in discrete dynamical systems Physica A 233 379-94
[20] Viallet C 2001 Private communication
[21] Veselov A P 1991 Integrable maps Russ. Math. Surv. 46 1-51
[22] Abarenkova N, Anglès d’Auriac J-Ch, Boukraa S, Hassani S and Maillard J-M 1999 From Yang-Baxter equations to dynamical zeta functions for birational transformations Statistical Physics on the Eve of the 21st Century Ser. Adv. Statist. Mech. vol 14 (River Edge, NJ: World Scientific) pp 436-90
[23] Kutz N 1996 The doubly discrete sine-gordon equation in geometry and physics PhD Thesis Mathematics Department, TU Berlin
[24] Roberts J A G and Thompson C J 1988 Dynamics of the classical heisenberg spin chain J. Phys. A: Math. Gen. 21 1769-80
[25] Veselov A P 1991 What is an integrable mapping? What is Integrability? (Springer Series in Nonlinear Dynamics) ed V E Zakharov (New York: Springer) pp 251-70

[^0]: 5 For example, the dual equation may be almost trivial.

[^1]: ${ }^{6}$ Note that the four integrals are not independent, i.e. $I_{\gamma} I_{\delta}=3 q^{2}+p^{2}+q I_{\beta}$. However, since I_{β} is linear in p and q we still use this integral in the construction of a dual mapping.

[^2]: ${ }^{7}$ More generally, k-integrals of a mapping are defined as integrals of the k th iterate of the mapping [19], here corresponding to the shift $n \rightarrow n+k$.

[^3]: ${ }^{8}$ Note that \mathcal{J}_{s} and \mathcal{J}_{q} depend only on the variables W_{n}.

