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Abstract
A new class of discrete dynamical systems is introduced via a duality relation
for discrete dynamical systems with a number of explicitly known integrals.
The dual equation can be defined via the difference of an arbitrary linear
combination of integrals and its upshifted version. We give an example of
an integrable mapping with two parameters and four integrals leading to a
(four-dimensional) dual mapping with four parameters and two integrals. We
also consider a more general class of higher-dimensional mappings arising
via a travelling-wave reduction from the (integrable) MKdV partial-difference
equation. By differencing the trace of the monodromy matrix we obtain a class
of novel dual mappings which is shown to be integrable as level-set-dependent
versions of the original ones.

PACS numbers: 02.30.Ik, 05.45.−a

1. Introduction

Discrete integrable systems have received a lot of attention in the last two decades. Areas of
physics in which discrete integrable systems prominently feature include statistical mechanics
and discrete analogues of integrable systems in classical mechanics or solid state physics
[5–8, 22–25].

Some of the early papers dealt with the problem of discretizing integrable partial
differential equations, such as the (modified) Korteweg–de Vries (MKdV) equation and
the sine-Gordon equation, while retaining their integrability. This led to integrable partial
difference equations (P�Es) [12–15]. Later papers studied integrable ordinary difference
equations (O�Es), both autonomous (i.e. integrable maps) [5–8, 10, 21] and non-autonomous
(e.g. discrete Painlevé equations, for a review see [11]).
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In this paper we start from a (primary) O�E with one or more first integrals, and construct
a dual O�E which also has one or more integrals. While neither the primary O�E nor the dual
need be integrable in order for this construction to work, here we will be mainly interested in
the case where the primary O�E is integrable. The question we subsequently seek to answer
is whether or not the ensuing dual equation is also integrable.

Accordingly, we focus on a new class of discrete dynamical systems which can be obtained
by means of a duality relation from a known discrete dynamical system which possesses a
number of integrals. The general idea is as follows. We consider a discrete dynamical system
given by the dth-order O�E:

un+d = f (un, un+1, . . . , un+d−1, {pi}), (1)

where {pi} is a set of l parameters occurring in the system and f : R
d+l → R. By the standard

method, we can alternatively view (1) as defining a map

Vn+1 = F[Vn, {pi}], (2)

in which

Vn := (un, un+1, . . . , un+d−1) (3)

is a d-dimensional vector and F : R
d+l → R

d .
Suppose the dynamical system is known to have the integrals

Ij := Ij (Vn, {pi}) = Ij (Vn+1, {pi}), (4)

with j = 1, . . . , m. Then we can form a linear combination
m∑

i=1

αjIj =: I (Vn, {pi}, {αj }), (5)

which, for arbitrary αj , is an integral of system (1).
Taking the difference between the integral I and its upshifted version, we derive a relation

of the type

I (Vn+1, {pi}, {αj }) − I (Vn, {pi}, {αj }) = L(Vn, Vn+1, {pi}) L∗(Vn, Vn+1, {pi}, {αj }), (6)

in which

L(Vn, Vn+1, {pi}) = un+d − f (un, un+1, . . . , un+d−1, {pi}) = 0 (7)

is equivalent to the original dynamical equation (1).
In fact, for system (1), the left-hand side of (6) must vanish and one would expect the

right-hand side to contain a factor such that the vanishing of that factor is equivalent to the
dynamical equation (1). Apart from this, the right-hand side may contain another factor such
that the vanishing of this second factor also ensures that the left-hand side of (6) is zero.

Starting from a specific example of a dynamical mapping (1) possessing integrals, it is not
clear to which extent the second factor would contain an interesting dependence on the field
Vn. However, if this dependence is interesting, the vanishing of the second factor could be
equivalent to another dynamical equation which by construction of (6) may be called the dual
equation of the original (1). The dual equation automatically has one integral which is given
by I (Vn, {pi}, {αj }) but, depending on the presence or absence of the original parameters {pi}
in L∗, there may be more integrals.

At this stage the description of how to obtain the dual equation and the nature of the
resulting dual equation is rather general5. However, in this paper, we will show on the basis of

5 For example, the dual equation may be almost trivial.
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some more sophisticated specific examples that indeed new dynamical systems with interesting
properties can be derived from the differencing of integrals described by (6).

In section 2, we will first consider what we call a motivating example. Our starting point
is a low-dimensional mapping arising from the integrable partial difference MKdV equation
of [6] by a travelling-wave reduction. It has four integrals and the dual mapping has four
parameters and two integrals but may not be integrable.

The following sections 3–6 are devoted to a more general class of higher-dimensional
mappings arising from the MKdV partial-difference equations treated in [6]. We consider
the integrals arising from different powers of the spectral parameter occurring in the trace
of the monodromy matrix T. Defining the dual equation by (6) with I = Trace T , we find
that these provide some new dynamical systems which can be considered as generalizations
of known integrable mappings and which have a number of interesting integrals. In fact,
we can establish the integrability of the ensuing dual equations. We do this by deriving a
Lax representation for it which can be obtained from the Lax representation of the original
system by some simple substitutions. Furthermore, it is interesting to note that in this case
the dual equation is a so-called level-set-dependent (LSD) version of the original equation.
This terminology refers to a higher-dimensional generalization of the work of [3, 4] on QRT
[7, 8] and other mappings, where it was shown that a large class of such mappings amounts
to a LSD version of the McMillan mapping. The work of [3, 4] and of [9] represents another
way of associating two dynamical systems with integrals to one another.

The treatment given in this paper can also be applied to a large variety of other dynamical
systems and various possible extensions and specific comments are given in a final discussion.

2. A motivating example: creating the dual of a 4D map

Consider the following fourth-order difference equation:

V4 = V0
qV1 − pV3

qV3 − pV1
. (8)

In (8) and throughout this section, Vj , j = 0, 1, 2, 3, 4 is shorthand for Vn+j , n ∈ Z, and p
and q are parameters. This equation can be obtained as a reduction of the so-called MKdV
P�E [6]. It is equivalent to the following map (V0, V1, V2, V3) �→ (V ′

0, V
′

1, V
′

2, V
′

3) in four
dimensions:

L: V ′
0 = V1

V ′
1 = V2

(9)
V ′

2 = V3

V ′
3 = V0

qV1 − pV3

qV3 − pV1
.

One checks that the map L has the following four integrals of motion (i.e. Iα(V1, V2, V3, V4) =
Iα(V0, V1, V2, V3) etc). They each depend linearly on the parameters p and q, which we
highlight by writing them:

Iα = Iα,qq − Iα,pp (10)

Iβ = Iβ,qq − Iβ,pp (11)

Iγ = Iγ,qq − Iγ,pp (12)

Iδ = Iδ,qq − Iδ,pp, (13)
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with

Iα,p = V1

V0
+

V2

V1
+

V3

V2
+

V0

V1
+

V1

V2
+

V2

V3
(14)

Iβ,p = V2

V0
+

V3

V1
+

V0

V2
+

V1

V3
+

V3V0

V2V1
+

V2V1

V3V0
(15)

Iγ,p = V3V0 (16)

Iδ,p = V −1
3 V −1

0 (17)

Iα,q = V3

V0
+

V0

V3
(18)

Iβ,q = V2

V0
+

V3

V1
+

V0

V2
+

V1

V3
+

V2V3

V0V1
+

V0V1

V2V3
(19)

Iγ,q = V0V1 + V1V2 + V2V3 (20)

Iδ,q = V −1
0 V −1

1 + V −1
1 V −1

2 + V −1
2 V −1

3 . (21)

These integrals may be inferred from the work of Hydon [2], but they can also be checked
directly using two obvious symmetries of (8): S1 : Vi �→ λVi, λ ∈ R and S2 : Vi �→ V −1

i .
This is equivalent to saying that L of (9) commutes with S1 and S2, whence if L has an integral
I it also has an integral I ◦ Si, i = 1, 2. Using this, the integrals follow by constructing
homogeneous expressions in the Vi of degree 0 (i.e. Iα, Iβ ), 2 (i.e. Iγ ) and −2 (i.e. Iδ). We
now take the linear combination of these integrals6:

I (V0, V1, V2, V3;p, q;α, β, γ, δ) = αIα + βIβ + γ Iγ + δIδ, (22)

and difference it, meaning we consider the difference between I and its upshifted version I ′

with Vj �→ Vj+1. Since the separate integrals satisfy

Iα − I ′
α =

[(
q

V3

V1
− p

)
− V0

V4

(
q − p

V3

V1

)] (
V1

V0
− V4

V3

)
, (23)

Iβ − I ′
β =

[(
q

V3

V1
− p

)
− V0

V4

(
q − p

V3

V1

)] (
V2

V0

(
1 +

V1

V3

)
− V4

V2

) (
1 +

V1

V3

)
, (24)

Iγ − I ′
γ =

[(
q

V3

V1
− p

)
− V0

V4

(
q − p

V3

V1

)]
(−V1V4), (25)

Iδ − I ′
δ =

[(
q

V3

V1
− p

)
− V0

V4

(
q − p

V3

V1

)] (
V −1

0 V −1
3

)
, (26)

and so vanish if (8) is satisfied, we find

I (V1, V2, V3, V4;p, q;α, β, γ, δ) − I (V0, V1, V2, V3;p, q;α, β, γ, δ)

= L(V0, V1, V2, V3, V4;p, q)L∗(V0, V1, V2, V3, V4;α, β, γ, δ), (27)

where

L(V0, V1, V2, V3, V4;p, q) =
[(

q
V3

V1
− p

)
− V0

V4

(
q − p

V3

V1

)]
(28)

6 Note that the four integrals are not independent, i.e. Iγ Iδ = 3q2 + p2 + qIβ . However, since Iβ is linear in p and q
we still use this integral in the construction of a dual mapping.
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L∗(V0, V1, V2, V3, V4;α, β, γ, δ) =
[

1

V0
(αV1V3 + βV2V3 + βV1V2 + δ)

− V4

V2
(αV2 + β(V3 + V1) + γV1V2V3)

]
1

V3
. (29)

The equation

L(V0, V1, V2, V3, V4;p, q) = 0, (30)

solved for V4 gives precisely (8). With (27), this reminds us that I of (22) is an integral of this
map. On the other hand, the equation

L∗(V0, V1, V2, V3, V4;α, β, γ, δ) = 0, (31)

defines a different fourth-order difference equation:

V4 = V2

V0

αV1V3 + β(V1V2 + V2V3) + δ

αV2 + β(V1 + V3) + γV1V2V3
. (32)

We call (32) the dual map corresponding to (8). It follows from (27) that I is also an integral
of the dual. But significantly in equation (27), the parameter sets {p, q} and {α, β, γ, δ}
dissociate from one another on the right-hand side. Since p and q do not appear in the dual
map (32), we can conclude that their coefficients in I are separately integrals of (32). More
precisely, we can use (10)–(13) to rewrite the expression for I of (22) as

I (V0, V1, V2, V3;p, q;α, β, γ, δ) = qIq − pIp, (33)

where Iq and Ip given by

Iq = (αIα,q + βIβ,q + γ Iγ,q + δIδ,q)

= α

(
V3

V0
+

V0

V3

)
+ β

(
V2

V0
+

V3

V1
+

V0

V2
+

V1

V3
+

V2V3

V0V1
+

V0V1

V2V3

)
+ γ (V0V1 + V1V2 + V2V3) + δ

(
V −1

0 V −1
1 + V −1

1 V −1
2 + V −1

2 V −1
3

)
(34)

Ip = (αIα,p + βIβ,p + γ Iγ,p + δIδ,p)

= α

(
V1

V0
+

V2

V1
+

V3

V2
+

V0

V1
+

V1

V2
+

V2

V3

)

+ β

(
V2

V0
+

V3

V1
+

V0

V2
+

V1

V3
+

V0V3

V1V2
+

V1V2

V0V3

)
+ γV0V3 + δV −1

0 V −1
3 (35)

are integrals of the dual.
Let us make some remarks about this process.

Remark.

(1) It has been convenient that the parameters p and q entered the integrals of (10)–(13) in a
linear way. One sees that the number of integrals of the dual is equal to the number of
parameters appearing in the original map and vice versa.

(2) The original map is actually degenerate, and can be reduced to a second-order difference
equation. This is achieved by introducing the reduced variables: W0 = V2

V0
,W1 = V3

V1
.

Then (8) reduces to

W2 = 1

W0

q − pW1

qW1 − p
. (36)
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Of the four integrals Iα, Iβ, Iγ , Iδ of the original map, only Iβ can be expressed in terms
of the reduced variables. However, differencing just Iβ in (22)–(27) would lead to a
completely trivial dual equation determined by L∗(V0, V1, V2, V3, V4; 0, β, 0, 0) = 0.

(3) For general parameters α, β, γ and δ, the dual map (32) has two integrals. It can also be
checked to be measure preserving. But this is not enough to ensure integrability. In fact,
no symplectic structure and no additional integrals have been found so far for the general
case. Numerically, some special cases of (32) have been shown to have zero algebraic
entropy [20]. It may also be interesting to investigate the possible integrability of the dual
by extending to four dimensions the arithmetic integrability tests of [16, 17].

We mention some special cases of the dual map that we have proved to be integrable.
• For β = 0, (32) reduces to the four-dimensional sine-Gordon (SG) mapping [1]. It

can be derived from the SG difference equation using a periodicity constraint [6, 1].
• For γ = δ = 0, (32) reduces to a three-dimensional mapping in terms of the variables

W0 = V1
V0

,W1 = V2
V1

,W2 = V3
V2

:

W3 = W1W0

W2

αW2 + β(1 + W1W2)

αW1 + β(1 + W1W2)
. (37)

For this reduced mapping, there are two integrals Iq and Ip with γ = δ = 0, both of
which can be expressed in terms of W0,W1 and W2. In combination with measure
preservation this implies integrability.

• For α = 0, (32) reduces to a three-dimensional mapping in terms of the variables
W0 = V1V0,W1 = V2V1,W2 = V3V2:

W3 = W1W2

W0

β(W1 + W2) + δ

β(W1 + W2) + γW1W2
. (38)

Again, for α = 0, both of the integrals Iq and Ip of (32) can be expressed in terms of
W0,W1 and W2.

(4) Finally, it is worthwhile to note that we can achieve four normal forms for (32) with
γ = δ = 0 ; γ = δ = 1 ; γ = 1, δ = 0 ; resp γ = 1, δ = −1. This can be done using the
rescalingVi �→ λVi and the symmetryVi �→ V −1

i , γ ↔ δ.

The exercise of constructing the dual of (8) is not without some mystery! From (36) it
follows that (8) is in a sense a trivial four-dimensional mapping since it can be reduced to a
two-dimensional one. And yet, ignoring this fact and taking its four non-independent integrals
Iα, Iβ, Iγ and Iδ produces, in special cases, duals (37) and (38) which appear to be genuinely
new and nontrivial integrable three-dimensional mappings (see [18] for some other examples
of three-dimensional integrable mappings).

3. Integrable O∆Es derived from soliton equations have a dual

In this section and in section 4, we present a method for obtaining the dual equations of a general
class of higher-dimensional mappings arising from the MKdV partial difference equation [6].
However, we first use a general formulation on the basis of a given Lax representation for
general integrable partial difference equations. This is done to make the treatment directly
applicable to other integrable dynamical systems as well. The remaining sections 5 and 6 will
specialize to the MKdV case.

A (scalar) P�E on a two-dimensional lattice f�,m = 0, �,m ∈ Z has a Lax representation
if there are matrices L�,m(k),M−1

�,m(k),N�,m(k) depending on a spectral parameter k such that

L�,m(k)M−1
�,m(k) − M−1

�+1,m(k) L�,m+1(k) = f�,mN�,m(k) (39)

in which f�,m does not depend on k, and N�,m is nonsingular on f�,m = 0.
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We restrict ourselves to the P�E

f�,m = 0

with f�,m of the form

f�,m = f (u�,m, u�+1,m, u�,m+1, u�+1,m+1, p�,m) (40)

where the p�,m denote any additional parameters arising from the matrices L and M, and the
fields u�,m, for simplicity, are taken to be scalars. The subscripts �,m allow for the possibility
that the parameters p depend on the lattice sites (�,m). This general setting is investigated in
order to obtain dual equations and their integrals with a sufficient amount of generality.

A P�E can be reduced to an ordinary difference equation (O�E) through travelling-wave
reductions [6]. This can be done considering two integers z1 and z2 > z1 which are relatively
prime. In the (z1, z2) travelling-wave reduction the parameters p�,m in the matrices L�,m(k)

and M−1
�,m(k) depend on the sites (�,m) via the similarity variable n = z1� + z2m and we

consider periodic solutions off�,m = 0 satisfying u�,m = u�−z2,m+z1 , i.e.

p�,m = pn, u�,m = un, n = z1� + z2m (41)

and these solutions can be obtained from the O�E

fn = f
(
un, un+z1 , un+z2 , un+z1+z2 , pn

) = 0. (42)

The O�E can be solved specifying initial values on a standard staircase [6] consisting
of points (�i, mi), i = 0, 1, . . . , z1 + z2 − 1 with n(�i,mi) = n + ni such that every value
ni = 0, 1, . . . , z1 + z2 − 1 occurs exactly once among the ni values on the staircase. In fact,
the un with n � z1 + z2 can be obtained from the O�E fn+ν = 0 (ν � 0), expressing un+ν+z1+z2

in terms of un+ν, un+ν+z1 , un+ν+z2 .
The monodromy matrix Ln is defined to be the ordered product of Lax matrices along a

standard staircase (more detail will follow in the next section). From (39) it can be shown that

TraceLν
n = TraceLν

n+1, ν = 1, 2, . . . . (43)

In the special case of 2 × 2 matrices Ln,M
−1
n , such that detLn is trivial, we can restrict

ourselves to ν = 1.
Equation (43) is satisfied independently of the value of the spectral parameter k, and the

coefficients of the various powers of k appearing in Trace Ln give integrals of the O�E fn = 0.
(Note that it is not generally true that all integrals of the O�E can be obtained that way. In
fact of the four integrals Iα, Iβ, Iγ , Iδ of the mapping (8) in the example of section 2, only the
integral Iβ follows from the Lax representation of the MKdV reduction associated with (8)).
On the other hand, taking the difference between Trace Ln and its shifted version we obtain a
relation

TraceLn − TraceLn+1 = fnf
∗
n (44)

containing a factor f ∗
n , ensuring that f ∗

n = 0 implies the vanishing of the lhs as well. By
analogy with (6), the equation f ∗

n = 0 will be called the dual O�E.

4. Standard staircase and dual O∆E

We now give a prescription for the dual O�E in the case that z1 = 1, z2 = z, n = l + zm. In
this case, the standard staircase as introduced in [6] can be constructed in the following steps,
see, e.g., figure 1.
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�

m

Ln+1 Ln+2 Ln+3 Ln+4 Ln+5 Ln+6

Ln Ln+1

n + 1 n + 2 n + 3 n + 4 n + 5 n + 6

n n + 1 n + 2

M−1
n

M−1
n+1

Figure 1. Standard staircase (——–) and shifted staircase (◦ ◦ ◦ ◦ ◦) under n → n + 1, in the case
z1 = 1, z2 = 6.

To construct a standard staircase for z1 = 1, z2 = z:

(a) we start with the point (�0,m0) with n(�0,m0) = n + n0, n0 = 1;
(b) we do a step to the left, to the point (�1,m1) = (�0 − 1,m0) with n(�1,m1) = n + n1,

n1 = 0;
(c) then we do a step upward to the point (�2,m2) = (�1,m1 + 1) with n(�2,m2) = n + n2,

n2 = z;
(d) next we do z − 2 steps to the left via points (�i, mi) = (�0 − i + 1,m0 + 1) with

n(�i,mi) = n + ni, ni = z − i + 2, i = 3, 4, . . . , z − 1 to reach the point (�z,mz) =
(�0 − z + 1,m0 + 1) with n(�z,mz) = n + nz, nz = 2;

(e) a final step to the left brings us to (�z+1,mz+1) = (�0 − z,m0 + 1) with n(�z+1,mz+1) = 1.
The staircase is thus completed. See figure 1 for an example.

To obtain the monodromy matrix Ln we associate Lax matrices with the steps of the
staircase in the following way:

(i) we associate with the first step from (�0,m0) to (�1,m1) the Lax matrix S(n0, n1) = Ln;
(ii) with the second step from (�1,m1) to (�2,m2) we associated the Lax matrix S(n1, n2) =

M−1
n ;

(iii) with the z − 2 steps to the left from (�i, mi) to (�i+1,mi+1) with i = 2, . . . , z − 1 we
associate the Lax matrices S(ni, ni+1) = Ln+z−i+1;

(iv) with the final step from (�z,mz) to (�z+1,mz+1) we associate the Lax matrix S(nz, nz+1) =
Ln+1.

The monodromy matrix Ln is the ordered product of Lax matrices along the standard staircase

Ln =
z∏

i=0

S(ni, ni+1). (45)

From the explicit S(ni, ni+1) we have the factorization property

Ln = LnM
−1
n AnLn+1 (46a)

with

An = Ln+z−1Ln+z−2 . . . Ln+2. (46b)

The shifted monodromy matrix

Ln+1 =
z∏

i=0

S(ni + 1, ni+1 + 1), (47a)

cf figure 1, can be expressed as

Ln+1 = Ln+1M
−1
n+1Ln+zAn (47b)

and therefore, cf (39)

LnL
−1
n+1 − L−1

n+1Ln+1 = (
LnM

−1
n − M−1

n+1Ln+z

)
An = fnNnAn. (48)



Duality for discrete integrable systems 3973

Hence

TraceLn − TraceLn+1 = fn Trace NnTn (49a)

with

Tn = AnLn+1 = Ln+z−1Ln+z−2 . . . Ln+1. (49b)

The dual equation is given by

f ∗
n = Trace NnTn = 0. (50)

It is completely determined by the matrix Nn(k) in equation (39) and the matrices L in
equation (49b). Since Trace Ln is also an integral of the dual equation, we can use the
difference to define a dual–dual equation f ∗∗

n = 0 via Trace Ln − Trace Ln+1 = f ∗
n f ∗∗

n . In
comparing this to equation (44) it is clear that the dual–dual equation f ∗∗

n = 0 is just the
original one fn = 0, provided that the same integrals are used in the construction of the dual
and the dual–dual equation.

5. Dual MKdV O∆E in the case z1 = 1, z2 = z

We now specialize the discussion of the previous two sections to consider the dual O�E
associated with the MKdV P�E f�,m = 0, in the case that z1 = 1, z2 = z, n = � + zm. The
dual equation associated with the more general reduction of the MKdV P�E with z2 > z1 > 1
can also be investigated. However, this is more complicated and will not be explicitly pursued
in this paper.

In the investigation of the dual equation of the z1 = 1, z2 = z reduction of the MKdV P�E,
one may anticipate that the number of parameters appearing in the dual equation will depend
on the number of parameters in the original MKdV P�E, or in the Lax matrices occurring in
the associated Lax representation. We therefore choose a rather general inhomogeneous
setting in which the Lax matrices L�,m(k),M−1

�,m(k) contain parameters p�,m, r�,m, a�,m,
b�,m, q�,m, s�,m, c�,m, d�,m. The subscripts indicate a possible dependence of the parameters
on the sites (�,m) of the two-dimensional lattice; albeit with such a dependence satisfying
compatibility conditions to ensure that a consistent difference equation f�,m = 0 follows from
the Lax equation

L�,m(k)M−1
�,m(k) − M−1

�+1,m(k)L�,m+1(k) = 0, (51)

i.e. equation (39) with the right-hand side replaced by 0.
To investigate the z1 = 1, z2 = z reduction of the MKdV P�E with u�,m satisfying

the periodicity constraint ul,m = ul−z,m+1 = un, n = l + zm, we impose the conditions
pl,m = pl−z,m+1 = pn for p = (p, r, a, b, q, s, c, d). That is, all parameters occurring in the
Lax matrices satisfy the periodicity constraint also.

Hence we consider the Lax matrices

L�,m(k) =
(

pn −anu�+1,m

−k2bn

u�,m
rn

u�+1,m

u�,m

)
, M−1

�,m(k) =
(

sn dnu�,m

k2cn

u�,m+1
qn

u�,m

u�,m+1

)
. (52)

The special case of (52): p�,m = p, r�,m = r, q�,m = q, s�,m = s, a�,m = b�,m = c�,m =
d�,m = 1, was investigated in [1] in an investigation of four-dimensional mappings satisfying
a specific symplectic structure (as a generalization of [6]). Working out the (1, 1) and (2, 2)

elements of condition (51) and insisting that the (1, 2) and (2, 1) elements of this condition
lead to the same difference equation, we are led to the compatibility conditions

sn+1 = pn

pn+z

sn, qn+1 = rn

rn+z

qn, dn+1 = an

bn+z

cn, cn+1 = bn

an+z

dn (53)
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and

kn := k2 anbn

pnrn

= kn+z, (54a)

or equivalently with (53)

ln := cndn

qnsn

= ln+1 = l. (54b)

Under these conditions, we have equation (39) with

f�,m = pndn − anqn

u�+1,m

u�,m+1
+

u�+1,m+1

u�,m

(
an+zsn+1 − dn+1rn+z

u�+1,m

u�,m+1

)
. (55a)

The equation f�,m = 0 with f�,m given by (55a) is a general inhomogeneous version
of the MKdV partial-difference equation of [1, 6] with parameters p depending on the sites
(�,m) via the similarity variable n. Under conditions (53), (54) for the parameters, it has the
Lax representation (39) with the matrices L�,m(k) and M−1

�,m(k) given by (52) and the matrix
N�,m(k) given by

N�,m(k) =
(

0 u�,m

−k2

u�+1,m+1

bn

an+z

pn+z

pn
0

)
. (55b)

In the travelling-wave reduction z1 = 1, z2 = z, (55) reduces to the primary MKdV O�E

fn = 0 (56a)

with

fn = pndn − anqn

un+1

un+z

+
un+1+z

un

(
an+zsn+1 − dn+1rn+z

un+1

un+z

)
. (56b)

The dual equation follows from (50) and (55b) and is given by

f ∗
n = 0, (57a)

where

f ∗
n = t21un − bn

an+z

pn+z

pn

k2

un+z+1
t12 (57b)

and t12 and t21 are the off-diagonal elements of the matrix Tn, defined by (49b).
Evaluating the off-diagonal elements of the matrix Tn it can be shown that the dual MKdV

O�E (57) can be expressed as a (z−1)-dimensional mapping in terms of the reduced variables

Wn+ν = rn+ν

an+ν

an+ν+1

pn+ν+1

un+ν+2

un+ν

. (58)

We have
Wn+z−1

Wn

= kn

Z12(Wn+1,Wn+2, . . . ,Wn+z−2)

Z21(Wn+1,Wn+2, . . . ,Wn+z−2)
(59)

in which Z12 and Z21 are the off-diagonal elements of the matrix

Z(Wn+1,Wn+2, . . . ,Wn+z−2) =
(

1 1
kn+z−1 1

) (
1 1

kn+z−2Wn+z−2 Wn+z−2

)

×
(

1 1
kn+z−3Wn+z−3 Wn+z−3

)
· · ·

(
1 1

kn+1Wn+1 Wn+1

)
, (60)

cf appendix A for some details of the derivation.
In equation (59) the numerator Z12 and denominator Z21 are multilinear functions

containing all 2z−2 terms W
µ1
n+1W

µ2
n+2 . . . W

µz−2
n+z−2, µ1, µ2, . . . , µz−2 = 0, 1, with coefficients

depending on kn+1, kn+2, . . . , kn+z−1.
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For example for z = 3, 4, 5, we have respectively

z = 3: Z12(Wn+1) = 1 + Wn+1

Z21(Wn+1) = kn+2 + kn+1Wn+1

z = 4: Z12(Wn+1,Wn+2) = 1 + Wn+1 + Wn+2(kn+2 + Wn+1)

Z21(Wn+1,Wn+2) = kn+3(1 + kn+1Wn+1) + Wn+2(kn+2 + kn+1Wn+1)

z = 5: Z12(Wn+1,Wn+2,Wn+3) = (1 + kn+3Wn+3)(1 + Wn+1)

+ Wn+2(1 + Wn+3)(kn+2 + Wn+1)

Z21(Wn+1,Wn+2,Wn+3) = (kn+4 + kn+3Wn+3)(1 + kn+1Wn+1)

+ Wn+2(kn+4 + Wn+3)(kn+2 + kn+1Wn+1). (61)

6. Integrability of the dual MKdV

To prove that the dual MKdV O�E is integrable we first construct two integrals Js ,Jq and
two 2-integrals7 Jcn

,Jdn
satisfying Jcn+1 = Jdn

,Jdn+1 = Jcn
.

From equations (46a), (49b), (50), it is clear that the parameters {sn, cn, dn, qn} in the
matrix M−1

n in Trace Ln dissociate from the parameters pn, an, bn, rn occurring in the matrices
L and the dual equation. To investigate the integrals of the dual equation it is therefore
worthwhile to consider the decomposition

TraceLn = Jsn
+ Jcn

+ Jdn
+ Jqn

(62)

in which Jsn
,Jcn

,Jdn
,Jqn

are terms arising from elements sn, cn, dn, qn of the matrix M−1
n in

TraceLn = Trace LnM
−1
n Tn.

Here using (52), and involving the matrix elements tij of Tn, we have(Jsn

sn

Jcn

k2cn

Jdn

dn

Jqn

qn

)
=

(
t11

t12
un

t21un t22

) (
pn −an

un+1
un+z

−k2bn rn
un+1
un+z

)
. (63)

Introducing

Jsn
= Jsn

/sn, Jcn
= Jcn

/cn, Jdn
= Jdn

/dn, Jqn
= Jqn

/qn (64)

and using equation (53) to express sn+1, qn+1, dn+1, cn+1 in terms of sn, qn, cn, dn, we find from
(49a) and (50) that if the dual equation is satisfied then

0 = TraceLn − TraceLn+1 = sn

{
Jsn

− pn

pn+z

Jsn+1

}
+ qn

{
Jqn

− rn

rn+z

Jqn+1

}

+ cn

{
Jcn

− an

bn+z

Jdn+1

}
+ dn

{
Jdn

− bn

an+z

Jcn+1

}
. (65)

Since the matrices Ln+1, Ln+2, . . . , Ln+z−1 and Nn occurring in the dual equation do not contain
any of the parameters sn, qn, cn, dn, equation (65) must be valid independently of the choice
of sn, qn, cn, dn. This means that

Jsn
= pn

pn+z

Jsn+1 , Jqn
= rn

rn+z

Jqn+1 , Jcn
= an

bn+z

Jdn+1 , Jdn
= bn

an+z

Jcn+1 (66)

and hence, using again (53) and (64),

Jsn
= Jsn+1 := Js , Jqn

= Jqn+1 := Jq, Jcn
= Jdn+1 , Jdn

= Jcn+1 . (67)

7 More generally, k-integrals of a mapping are defined as integrals of the kth iterate of the mapping [19], here
corresponding to the shift n → n + k.
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From equation (63) we can solve the off-diagonal elements t12, t21 of the matrix Tn to
obtain

1

u2
n

t12

t21
=

an
Jsn

sn

un+1
un+z

+ pn

k2
Jcn

cn

k2bn
Jqn

qn
+ rn

Jdn

dn

un+1
un+z

. (68)

Inserting this in the dual MKdV (57), including the factor an+z/bn in the denominator and
the factor pn+z/pn in the numerator and using (53) yields

un+z+1

un

=
k2an

Jsn

sn+1

un+1
un+z

+ pn+z
Jcn

cn

k2an+z
Jqn

qn
+ rn

Jdn

cn+1

un+1
un+z

. (69)

Equation (69) is very similar to the MKdV O�E (56). To prove its integrability we rewrite it
as follows, recalling (54b):

un+z+1

un

=
k2anqnJsn

un+1
un+z

+ pndnl−1Jcn

k2an+zsn+1Jqn
+ rn+zdn+1l−1Jdn

un+1
un+z

. (70)

Equation (70) is the travelling-wave reduction u�,m → u�+zm = un of the P�E

u�+1,m+1

u�,m

=
anq

∗
n

u�+1,m

u�,m+1
− pnd

∗
n

an+zs
∗
n+1 − rn+zd

∗
n+1

u�+1,m

u�,m+1

(71a)

with

q∗
n = k2qnJs , d∗

n = −dnl−1Jcn
,

s∗
n+1 = k2sn+1Jq, d∗

n+1 = −dn+1l−1Jdn
.

(71b)

Since (71a) is identical to (55a), it follows that in order for (71a) to be integrable via a Lax
representation, we must impose the compatibility conditions

sn+1
∗

sn
∗ = pn

pn+z

,
qn+1

∗

qn
∗ = rn

rn+z

,
dn+1

∗

cn
∗ = an

bn+z

,
cn+1

∗

dn
∗ = bn

an+z

. (72)

Defining

c∗
n = −cnJdn

l−1 (73)

and using (53) and (67) it follows with (71b) that this condition is indeed satisfied. Comparing
(71) and (72) with (55a) and (53) it follows that the matrices

L�,m(k∗) =
(

pn −anu�+1,m

−k∗2bn

u�,m
rn

u�+1,m

u�,m

)
(74a)

and

M∗−1

�,m(k∗) =
(

s∗
n d∗

nu�,m

k∗2c∗
n

u�,m+1
q∗

n
u�,m

u�,m+1

)
, (74b)

in which k∗ is a new spectral parameter, satisfy the relation

L�,m(k∗)M∗−1
�,m (k∗) − M∗−1

�+1,m(k∗)L�,m+1(k
∗)

=
(

pnd
∗
n − anq

∗
n

u�+1,m

u�,m+1
+

u�+1,m+1

u�,m

(
an+zs

∗
n+1 − d∗

n+1rn+z

u�+1,m

u�,m+1

))
N�,m(k∗).

(75)

This means that equation (71) has a Lax representation in terms of the matrices L�,m(k∗) and
M∗−1

�,m(k∗) and this can be used to evaluate the monodromy matrix L∗
n for the travelling-wave
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reduction (70) built up from these matrices. From Trace L∗
n, one can obtain additional integrals

of the dual MKdV O�E for larger values of z.
The parameters Js ,Jcn

,Jdn
and Jq can be determined specifying the initial conditions

for un, un+1, . . . , un+z on a standard staircase. Because of this, equation (29) will be called the
level-set-dependent (LSD) MKdV O�E.

The term level-set-dependent relates to a concept introduced in [3, 4]. Given two O�Es,
with O�E (2) possessing integrals, we will say

O�E(2) = LSD O�E(1), (76)

if O�E (2) acts on the level sets of its integrals as O�E (1). The idea is that an initial condition
for O�E (2) determines the values of the integrals of O�E (2). Then the ensuing motion can
be described by a simpler (and possibly integrable) O�E (1). This is completely analogous to
the two-dimensional setting of [3, 4] in which it was shown that each QRT map actually acts
as a generalized McMillan map on the level sets of the QRT integral. Here we have shown
that the dual MKdV map acts as a MKdV map on the level sets of the integrals Js ,Jq and the
2-integrals Jcn

= Jdn+1 and Jdn
= Jcn+1 .

The explicit expressions for Js ,Jq,Jcn
and Jdn

are given by8

Js = S(Z11 + knWnZ12), Jq = Q(Z21 + WnZ22)

WnWn+1 . . . Wn+z−2

Jcn
= −k2CnS(Z11 + WnZ12)

un+1

un+z

, Jdn
= −C−1

n lQ
(Z21 + knWnZ22)

WnWn+1 . . .Wn+z−2

un+z

un+1
,

(77)

in which the Wn+ν have been defined by (58) and Zαβ = Zαβ(Wn+1,Wn+2, . . . , Wn+z−2) are
matrix elements of the matrix Z defined by (60).

The parameter Cn is defined by

Cn = cnan

snpn

(78)

and the constants Q and S by

Sn = pnpn+1 . . . pn+z−1sn = S (Sn+1/Sn = 1)

Qn = rnrn+1 . . . rn+z−1 · qn = Q (Qn+1/Qn = 1).
(79)

Some details of the derivation of (77) are presented in appendix B.
In summary, we have considered the dual MKdV O�E associated with the z1 = 1, z2 = z

similarity reduction of the MKdV P�E. These considerations can be extended to more general
similarity reductions z1 > 1. Also there, the dual MKdV O�E can be expressed as a
generalized MKdV with parameters J depending on the initial conditions but in the general
case we do not anticipate relations like (67) ensuring the existence of a Lax representation
and consequently the integrability of the dual MKdV O�E. The present treatment can also be
adapted to the SG case with only minor variations.

7. Concluding remarks

We have studied the dual MKdV O�E associated with the z1 = 1, z2 = z similarity reduction
of the MKdV P�E. This dual equation is an integrable system, since it is the LSD version of
the MKdV O�E. In this LSD version, there appear the integrals Js , Jq and the 2-integrals
Jcn

= Jdn+1 and Jdn
= Jcn+1 of the dual MKdV which follow from the trace of the monodromy

matrix. The dual MKdV has a Lax representation that is obtained from the Lax representation
(52) of the MKdV P�E using the substitutions (71b) which involve the integrals Js ,Jq and

8 Note that Js and Jq depend only on the variables Wn.
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the 2-integrals Jcn
,Jdn

, and introduces a new spectral parameter. The (reduced variable)
dual MKdV (59), (60) contains the parameters kn, . . . , kn+z−1, defined by (54a). In the
homogeneous case, this set of parameters reduces only to the single parameter k. However, it
is worthwhile to note that the dual equation has been obtained using the trace of the monodromy
matrix

Trace Tn =
∑
m

k2mIm (80)

in which the integrals Im of the original MKdV O�E are the coefficients of different powers
of the spectral parameter. Rather than considering the special case of (80), one can also start
from an arbitrary linear combination of integrals

I =
∑
m

αmIm (81)

and the dual MKdV in the homogeneous case can be inferred from (59)–(60) by replacing k2m

by the parameter αm. In this way, the family of dual MKdV mappings for increasing z will
contain an increasing number of parameters αm, but the existence of a Lax representation is
not obvious in this more general case.

Finally, it may be noted that the dual equations (59), (60) have been obtained taking into
account only the integrals of the MKdV O�E that appear in the trace of the monodromy
matrix. However, in special cases, the MKdV O�E fn = 0 of (56) may have additional
integrals which can be inferred from the work of Hydon [2] or by considering homogeneous
expressions in the variables u of various degrees. This would then lead to a dual equation
in the variables u with more parameters, similar to the case of the motivating example of
section 2. But in that case the Lax representation (74) and LSD description (70) are no longer
valid and the integrability of the dual equation is open.

We conclude with some remarks:

• The considerations in this paper can be applied to the z1 = 1, z2 = z reductions of
other P�E as well. For instance, for the reduction of the integrable SG P�E, the dual
equation can be expressed as a LSD SG O�E and a Lax representation is obtained by
simple substitutions from the Lax representation of the SG O�E. Also the dual of the
z1 = 1, z2 = z reduction of the KdV P�E can be investigated in a similar way.

• The treatment in this paper can also be extended to more general reductions with z1 > 1
of the MKdV P�E. The dual equation can be obtained from the trace of the monodromy
matrix and one can show that the dual equation can be regarded as an extended version
of the MKdV O�E as given by (70) with the coefficients Jsn

,Jqn
,Jcn

and Jdn
explicitly

given in terms of the variables un. In this general case, however, the reasoning leading
to a condition of the type (66) is no longer applicable and there is no direct relation
between the coefficients Jsn

,Jqn
,Jcn

and Jdn
and the integrals of the dual MKdV. So

in this case the extended MKdV equation (70) cannot be interpreted as an LSD MKdV
equation and also a Lax representation like (75) does not apply. Hence, at this stage, the
integrability of the dual MKdV equation for z1 > 1 has not been proved. It is interesting
to note, however, that the z1 = 2, z2 = 3 reduction of the MKdV P�E leads to a dual
equation which is a four-dimensional mapping that is superintegrable by the existence of
two integrals In = In+1, Jn = Jn+1 and two coupled 2-integrals Gn = Hn+1,Hn = Gn+1.
We hope to investigate the integrability of the more general cases in the near future.

• From (76), it follows that each orbit of O�E (2) corresponds to an orbit of O�E (1)
restricted to a particular intersection of level sets of the integrals of O�E (2). This shows
that considered ‘orbit-by-orbit’ O�E (2) is solvable, and in that sense integrable, if O�E
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(1) is. For example, if O�E (2) is a rational map, each of its orbits will have vanishing
algebraic entropy, thus passing this test. However, on the face of it, LSD integrability
does not imply symplecticity or Liouville integrability of O�E (2), as these refer to global
structures of O�E (2) by which orbits are assembled together.

Appendix A

To prove equation (59) we first express the Lax matrix Ln+ν(k), cf (52), as

Ln+ν(k) = pn+ν

(
1 0
0 −pn+ν+1

an+ν+1

1
un+ν+2

.

) (
1 1

kn+νWn+ν Wn+ν

)(
1 0
0 − an+ν

pn+ν
un+ν+1

)
. (A1)

Then from (49b) we have

Tn = pn+1pn+2 . . . pn+z−1

(
1 0
0 −pn+z

an+z

1
un+z+1

)(
1 1

kn+z−1Wn+z−1 Wn+z−1

)

×
(

1 1
kn+z−2Wn+z−2 Wn+z−2

)
· · ·

(
1 1

kn+1Wn+1 Wn+1

) (
1 0
0 − an+1

pn+1
un+2

)
(A2)

which can be expressed as

Tn = pn+1 . . . pn+z−1

(
1 0
0 − rn+z−1

an+z−1

1
un+z−1

)
Z

(
1 0
0 − an+1

pn+1
un+2

)
(A3)

in which the matrix Z has been defined by (60).
From (A3) and (57) we then obtain

un+z+1 = k2bn

an+z

pn+z

pn

Z12

Z21

an+1

pn+1

an+z−1

rn+z−1

un+2un+z−1

un

(A4)

which with (54a) and (58) yields (59).

Appendix B

From equations (63) and (A3) we obtain the relations

Jsn
= S

(
Z11 + kn

rn

an

an+1

pn+1

un+2

un

Z12

)

Jqn
= S

qn

sn

an

pn

rn+z−1

an+z−1

unun+1

un+z−1un+z

(
Z21 +

rn

an

an+1

pn+1

un+2

un

Z22

)

Jcn
= −k2S

cnan

snpn

(
Z11 +

rn

an

an+1

pn+1

un+2

un

Z12

)
un+1

un+z

Jdn
= −S

dn

sn

rn+z−1

an+z−1

un

un+z−1

(
Z21 + kn

rn

an

an+1

pn+1

un+2

un

Z22

)
(B1)

and equations (77) can be derived using (58) and the relation
unun+1

un+z−1un+z

= an+z−1

an

rnrn+1 . . . rn+z−2

pn+1pn+2 . . . pn+z−1

1

WnWn+1 . . . Wn+z−2
. (B2)
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